language-icon Old Web
English
Sign In

In vitro

In vitro (meaning: in the glass) studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called 'test-tube experiments', these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, and whole plants. In vitro (meaning: in the glass) studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called 'test-tube experiments', these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, and whole plants. In vitro (Latin: in glass; often not italicized in English) studies are conducted using components of an organism that have been isolated from their usual biological surroundings, such as microorganisms, cells, or biological molecules. For example, microorganisms or cells can be studied in artificial culture media, and proteins can be examined in solutions. Colloquially called 'test-tube experiments', these studies in biology, medicine, and their subdisciplines are traditionally done in test tubes, flasks, Petri dishes, etc. They now involve the full range of techniques used in molecular biology, such as the omics. In contrast, studies conducted in living beings (microorganisms, animals, humans, or whole plants) are called in vivo . Examples of in vitro studies include: the isolation, growth and identification of cells derived from multicellular organisms in (cell or tissue culture); subcellular components (e.g. mitochondria or ribosomes); cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts); purified molecules such as proteins, DNA, or RNA); and the commercial production of antibiotics and other pharmaceutical products. Viruses, which only replicate in living cells, are studied in the laboratory in cell or tissue culture, and many animal virologists refer to such work as being in vitro to distinguish it from in vivo work in whole animals. In vitro studies permit a species-specific, simpler, more convenient, and more detailed analysis than can be done with the whole organism. Just as studies in whole animals more and more replace human trials, so are in vitro studies replacing studies in whole animals. Living organisms are extremely complex functional systems that are made up of, at a minimum, many tens of thousands of genes, protein molecules, RNA molecules, small organic compounds, inorganic ions, and complexes in an environment that is spatially organized by membranes, and in the case of multicellular organisms, organ systems. These myriad components interact with each other and with their environment in a way that processes food, removes waste, moves components to the correct location, and is responsive to signalling molecules, other organisms, light, sound, heat, taste, touch, and balance. This complexity makes it difficult to identify the interactions between individual components and to explore their basic biological functions. In vitro work simplifies the system under study, so the investigator can focus on a small number of components. For example, the identity of proteins of the immune system (e.g. antibodies), and the mechanism by which they recognize and bind to foreign antigens would remain very obscure if not for the extensive use of in vitro work to isolate the proteins, identify the cells and genes that produce them, study the physical properties of their interaction with antigens, and identify how those interactions lead to cellular signals that activate other components of the immune system. Another advantage of in vitro methods is that human cells can be studied without 'extrapolation' from an experimental animal's cellular response.

[ "Genetics", "Biochemistry", "Molecular biology", "Immunology", "Lymphokine", "5-IT", "Trypanosoma venezuelense", "Fetal bovine serum", "Trypan blue stain" ]
Parent Topic
Child Topic
    No Parent Topic