language-icon Old Web
English
Sign In

Auxin

Auxins (plural of auxin /ˈɔːksɪn/) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s.Kenneth V. Thimann (1904-1997) became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.2,4-Dichlorophenoxyacetic acid (2,4-D); active herbicide and main auxin in laboratory useα-Naphthalene acetic acid (α-NAA); often part of commercial rooting powders2-Methoxy-3,6-dichlorobenzoic acid (dicamba); active herbicide4-Amino-3,5,6-trichloropicolinic acid (tordon or picloram); active herbicide2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) Auxins (plural of auxin /ˈɔːksɪn/) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s.Kenneth V. Thimann (1904-1997) became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937. Auxins were the first of the major plant hormones to be discovered. They derive their name from the Greek word αυξειν (auxein – 'to grow/increase'). Auxin (namely IAA) is present in all parts of a plant, although in very different concentrations. The concentration in each position is crucial developmental information, so it is subject to tight regulation through both metabolism and transport. The result is the auxin creates 'patterns' of auxin concentration maxima and minima in the plant body, which in turn guide further development of respective cells, and ultimately of the plant as a whole. The (dynamic and environment responsive) pattern of auxin distribution within the plant is a key factor for plant growth, its reaction to its environment, and specifically for development of plant organs (such as leaves or flowers). It is achieved through very complex and well-coordinated active transport of auxin molecules from cell to cell throughout the plant body — by the so-called polar auxin transport. Thus, a plant can (as a whole) react to external conditions and adjust to them, without requiring a nervous system. Auxins typically act in concert with, or in opposition to, other plant hormones. For example, the ratio of auxin to cytokinin in certain plant tissues determines initiation of root versus shoot buds. On the molecular level, all auxins are compounds with an aromatic ring and a carboxylic acid group. The most important member of the auxin family is indole-3-acetic acid (IAA), which generates the majority of auxin effects in intact plants, and is the most potent native auxin. And as native auxin, its stability is controlled in many ways in plants, from synthesis, through possible conjugation to degradation of its molecules, always according to the requirements of the situation. Some synthetic auxins, such as 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), are used also as herbicides. Broad-leaf plants (dicots), such as dandelions, are much more susceptible to auxins than narrow-leaf plants (monocots) such as grasses and cereal crops, so these synthetic auxins are valuable as synthetic herbicides. Muslim physician ibn Tufail, as an early mention, wrote in his philosophical novel, that some flowers did seem to bend themselves towards light, alluding towards auxin. In 1881, Charles Darwin and his son Francis performed experiments on coleoptiles, the sheaths enclosing young leaves in germinating grass seedlings. The experiment exposed the coleoptile to light from a unidirectional source, and observed that they bend towards the light. By covering various parts of the coleoptiles with a light-impermeable opaque cap, the Darwins discovered that light is detected by the coleoptile tip, but that bending occurs in the hypocotyl. However the seedlings showed no signs of development towards light if the tip was covered with an opaque cap, or if the tip was removed. The Darwins concluded that the tip of the coleoptile was responsible for sensing light, and proposed that a messenger is transmitted in a downward direction from the tip of the coleoptile, causing it to bend. In 1913, Danish scientist Peter Boysen-Jensen demonstrated that the signal was not transfixed but mobile. He separated the tip from the remainder of the coleoptile by a cube of gelatine which prevented cellular contact but allowed chemicals to pass through. The seedlings responded normally bending towards the light. However, when the tip was separated by an impermeable substance, there was no curvature of the stem. In 1928, the Dutch botanist Frits Warmolt Went showed that a chemical messenger diffuses from coleoptile tips. Went's experiment identified how a growth promoting chemical causes a coleoptile to grow towards the light. Went cut the tips of the coleoptiles and placed them in the dark, putting a few tips on agar blocks that he predicted would absorb the growth-promoting chemical. On control coleoptiles, he placed a block that lacked the chemical. On others, he placed blocks containing the chemical, either centered on top of the coleoptile to distribute the chemical evenly or offset to increase the concentration on one side.

[ "Genetics", "Biochemistry", "Botany", "Gene", "Cytokinin", "Gravitropism", "Indoleacetamide hydrolase", "Naphthaleneacetic Acids", "Auxin binding" ]
Parent Topic
Child Topic
    No Parent Topic