One-Hop Out-of-Band Control Planes For Low-Power Multi-Hop Wireless Networks

Chaojie Gu Nanyang Technological University, Singapore
Rui Tan Nanyang Technological University, Singapore
Xin Lou Advanced Digital Sciences Centre, Singapore
Dusit Niyato Nanyang Technological University, Singapore


Separation of control and data planes (SCDP) is a desirable paradigm for low-power multi-hop wireless networks requiring high network performance and manageability. Existing SCDP networks generally adopt an in-band control plane scheme in that the control-plane messages are delivered by their data-plane networks. The physical coupling of the two planes may lead to undesirable consequences. To advance the network architecture design, we propose to leverage on the long-range communication capability of the increasingly available low-power wide-area network (LPWAN) radios to form one-hop out-of-band control planes. We choose LoRaWAN, an open, inexpensive, and ISM band based LPWAN radio to prototype our out-of-band control plane called LoRaCP. Several characteristics of LoRaWAN such as downlink-uplink asymmetry and primitive ALOHA media access control (MAC) present challenges to achieving reliability and efficiency. To address these challenges, we design a TDMA-based multi-channel MAC featuring an urgent channel and negative acknowledgment. On a testbed of 16 nodes, we demonstrate applying LoRaCP to physically separate the control-plane network of the Collection Tree Protocol (CTP) from its ZigBee-based data-plane network. Extensive experiments show that LoRaCP increases CTP's packet delivery ratio from 65% to 80% in the presence of external interference, while consuming a per-node average radio power of 2.97 mW only.

You may want to know: