Shortest Path And Maximum Flow Problems Under Service Function Chaining Constraints

Authors:
Gamal Sallam Temple University, USA
Gagan R Gupta AT&T Labs, USA
Bin Li University of Rhode Island, USA
Bo Ji Temple University, USA

Abstract:

With the advent of Network Function Virtualization (NFV), Physical Network Functions (PNFs) are gradually being replaced by Virtual Network Functions (VNFs) that are hosted on general purpose servers. Depending on the call flows for specific services, the packets need to pass through an ordered set of network functions (physical or virtual) called Service Function Chains (SFC) before reaching the destination. Conceivably for the next few years during this transition, these networks would have a mix of PNFs and VNFs, which brings an interesting mix of network problems that are studied in this paper: (1) How to find an SFC-constrained shortest path between any pair of nodes? (2) What is the achievable SFC-constrained maximum flow? (3) How to place the VNFs such that the cost (the number of nodes to be virtualized) is minimized, while the maximum flow of the original network can still be achieved even under the SFC constraint? In this work, we will try to address such emerging questions. First, for the SFC-constrained shortest path problem, we propose a transformation of the network graph to minimize the computational complexity of subsequent applications of any shortest path algorithm. Second, we formulate the SFC-constrained maximum flow problem as a fractional multicommodity flow problem, and develop a combinatorial algorithm for a special case of practical interest. Third, we prove that the VNFs placement problem is NP-hard and present an alternative Integer Linear Programming (ILP) formulation. Finally, we conduct simulations to elucidate our theoretical results.

You may want to know: