Linear Block Coding For Efficient Beam Discovery In Millimeter Wave Communication Networks

Yahia Shabara The Ohio State University, USA
Can Emre Koksal The Ohio State University, USA
Eylem Ekici The Ohio State University, USA


The surge in mobile broadband data demands is expected to surpass the available spectrum capacity below 6 GHz. This expectation has prompted the exploration of millimeter wave (mm-wave) frequency bands as a candidate technology for next generation wireless networks. However, numerous challenges to deploying mm-wave communication systems, including channel estimation, need to be met before practical deployments are possible. This work addresses the mm-wave channel estimation problem and treats it as a beam discovery problem in which locating beams with strong path reflectors is analogous to locating errors in linear block codes. We show that a significantly small number of measurements (compared to the original dimensions of the channel matrix) is sufficient to reliably estimate the channel. We also show that this can be achieved using a simple and energy-efficient transceiver architecture.

You may want to know: