Learning Tasks For Multitask Learning: Heterogenous Patient Populations In The ICU

Authors:
Harini Suresh Massachusetts Institute of Technology
Jen Gong Massachusetts Institute of Technology
John Guttag Massachusetts Institute of Technology

Introduction:

This paper studies Mobility event prediction. In this work, the authors present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task.

Abstract:

Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.

You may want to know: