Co-teaching: Robust Training Of Deep Neural Networks With Extremely Noisy Labels

Authors:
Bo Han RIKEN & UTS
Quanming Yao 4Paradigm
Xingrui Yu University of Technology Sydney
Gang Niu RIKEN
Miao Xu RIKEN AIP
Weihua Hu The University of Tokyo
Ivor Tsang University of Technology, Sydney
Masashi Sugiyama RIKEN / University of Tokyo

Introduction:

Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training.Therefore in this paper, the authors propose a new deep learning paradigm called 'Co-teaching' for combating with noisy labels.

Abstract:

Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called ''Co-teaching'' for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models.

You may want to know: