Adversarial Regularizers In Inverse Problems

Authors:
Sebastian Lunz University of Cambridge
Carola Schoenlieb Cambridge University
Ozan Öktem KTH - Royal Institute of Technology

Introduction:

Inverse Problems in medical imaging and computer vision are traditionally solved using purely model-based methods.The authors propose a new framework for applying data-driven approaches to inverse problems, using a neural network as a regularization functional.

Abstract:

Inverse Problems in medical imaging and computer vision are traditionally solved using purely model-based methods. Among those variational regularization models are one of the most popular approaches. We propose a new framework for applying data-driven approaches to inverse problems, using a neural network as a regularization functional. The network learns to discriminate between the distribution of ground truth images and the distribution of unregularized reconstructions. Once trained, the network is applied to the inverse problem by solving the corresponding variational problem. Unlike other data-based approaches for inverse problems, the algorithm can be applied even if only unsupervised training data is available. Experiments demonstrate the potential of the framework for denoising on the BSDS dataset and for computer tomography reconstruction on the LIDC dataset.

You may want to know: