Principled Schedulability Analysis For Distributed Storage Systems Using Thread Architecture Models

Authors:
Suli Yang Ant Financial Services Group
Jing Liu UW-Madison
Andrea C. Arpaci-Dusseau UW-Madison
Remzi H. Arpaci-Dusseau UW-Madison

Introduction:

In this paper, the authors present an approach to systematically examine the schedulability of distributed storage systems, identify their scheduling problems, and enable effective scheduling in these systems. We use Thread Architecture Models (TAMs) to describe the behavior and interactions of different threads in a system, and show both how to construct TAMs for existing systems and utilize TAMs to identify critical scheduling problems.

Abstract:

In this paper, we present an approach to systematically examine the schedulability of distributed storage systems, identify their scheduling problems, and enable effective scheduling in these systems. We use Thread Architecture Models (TAMs) to describe the behavior and interactions of different threads in a system, and show both how to construct TAMs for existing systems and utilize TAMs to identify critical scheduling problems. We identify five common problems that prevent a system from providing schedulability and show that these problems arise in existing systems such as HBase, Cassandra, MongoDB, and Riak, making it difficult or impossible to realize various scheduling disciplines. We demonstrate how to address these schedulability problems by developing Tamed-HBase and Muzzled-HBase, sets of modifications to HBase that can realize the desired scheduling disciplines, including fairness and priority scheduling, even when presented with challenging workloads.

You may want to know: