language-icon Old Web
English
Sign In

Origin of water on Earth

The origin of water on Earth is the subject of a significant body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in that it is the only planet with oceans of liquid water on its surface. Liquid water, which is necessary for life, continues to exist on the surface of Earth because the planet is distant enough from the Sun that it does not lose its water to the runaway greenhouse effect, but not so far that low temperatures cause all water on the planet to freeze.Cite error: A list-defined reference named 'source_mrk1' is not used in the content (see the help page).Cite error: A list-defined reference named 'source_mrk2' is not used in the content (see the help page). The origin of water on Earth is the subject of a significant body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in that it is the only planet with oceans of liquid water on its surface. Liquid water, which is necessary for life, continues to exist on the surface of Earth because the planet is distant enough from the Sun that it does not lose its water to the runaway greenhouse effect, but not so far that low temperatures cause all water on the planet to freeze. Earth could not have condensed from the protoplanetary disk with its current oceans of water because the early inner Solar System was far too hot for water to condense. Instead, water and other volatiles must have been delivered to Earth from the outer Solar System later in its history. Modern geochemical evidence suggests that water was delivered to Earth by impacts from icy planetesimals similar in composition to modern asteroids in the outer edges of the asteroid belt. However, when and how that water was delivered to Earth is the subject of ongoing research. One factor in estimating when water appeared on Earth is that water is continually being lost to space. H2O molecules in the atmosphere are broken up by photolysis, and the resulting free hydrogen atoms can sometimes escape Earth's gravitational pull (see: Atmospheric escape). When the Earth was younger and less massive, water would have been lost to space more easily. Lighter elements like hydrogen and helium are expected to leak from the atmosphere continually, but isotopic ratios of heavier noble gases in the modern atmosphere suggest that even the heavier elements in the early atmosphere were subject to significant losses. In particular, xenon is useful for calculations of water loss over time. Not only is it a noble gas (and therefore is not removed from the atmosphere through chemical reactions with other elements), but comparisons between abundances of its seven stable isotopes in the modern atmosphere reveal that the Earth lost at least one ocean of water early in its history, between the Hadean and Archean eras. Any water on Earth during the later part of its accretion would have been disrupted by the Moon-forming impact (~4.5 billion years ago), which likely vaporized much of Earth's crust and upper mantle and created a rock-vapor atmosphere around the young planet. The rock vapor would have condensed within two thousand years, leaving behind hot volatiles which probably resulted in a majority carbon dioxide atmosphere with hydrogen and water vapor. Afterwards, liquid water oceans may have existed despite the surface temperature of 230 °C (446 °F) due to the increased atmospheric pressure of the CO2 atmosphere. As cooling continued, most CO2 was removed from the atmosphere by subduction and dissolution in ocean water, but levels oscillated wildly as new surface and mantle cycles appeared. There is also geological evidence that helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption) was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt, Quebec, Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence either has yet to be discovered or has since been destroyed by geological processes like crustal recycling. Unlike rocks, minerals called zircons are highly resistant to weathering and geological processes and so are used to understand conditions on the very early Earth. Mineralogical evidence from zircons has shown that liquid water and an atmosphere must have existed 4.404 ± 0.008 billion years ago, very soon after the formation of Earth. This presents somewhat of a paradox, as the cool early Earth hypothesis suggests temperatures were cold enough to freeze water between about 4.4 billion and 4.0 billion years ago. Other studies of zircons found in Australian Hadean rock point to the existence of plate tectonics as early as 4 billion years ago. If true, that implies that rather than a hot, molten surface and an atmosphere full of carbon dioxide, early Earth's surface was much as it is today. The action of plate tectonics traps vast amounts of CO2, thereby reducing greenhouse effects, and leading to a much cooler surface temperature, and the formation of solid rock and liquid water. While the majority of Earth's surface is covered by oceans, those oceans make up just a small fraction of the mass of the planet. The mass of Earth's oceans is estimated to be 1.37 x 1021 kg, which is 0.023% of the total mass of Earth, 6.0 x 1024 kg. An additional 0.5 x 1021 kg of water is estimated to exist in ice, lakes, rivers, groundwater, and atmospheric water vapor. A significant amount of water is also stored in Earth's crust, mantle, and core. Unlike molecular H2O that is found on the surface, water in the interior exists primarily in hydrated minerals or as trace amounts of hydrogen bonded to oxygen atoms in anhydrous minerals. Hydrated silicates on the surface transport water into the mantle at convergent plate boundaries, where oceanic crust is subducted underneath continental crust. While it is difficult to estimate the total water content of the mantle due to limited samples, approximately three times the mass of the Earth's oceans could be stored there. Similarly, the Earth's core could contain four to five oceans worth of hydrogen. Water has a much lower condensation temperature than other materials that compose the terrestrial planets in the Solar System, such as iron and silicates. The region of the protoplanetary disk closest to the Sun was very hot early in the history of the Solar System, and it is not feasible that oceans of water condensed with the Earth as it formed. Further from the young Sun where temperatures were cooler, water could condense and form icy planetesimals. The boundary of the region where ice could form in the early Solar System is known as the frost line (or snow line), and is located in the modern asteroid belt, between about 2.7 and 3.1 astronomical units (AU) from the Sun. It is therefore necessary that objects forming beyond the frost line–such as comets, trans-Neptunian objects, and water-rich meteoroids (protoplanets)–delivered water to Earth. However, the timing of this delivery is still in question. One theory claims that Earth accreted (gradually grew by accumulation of) icy planetesimals about 4.5 billion years ago, when it was 60 to 90% of its current size. In this scenario, Earth was able to retain water in some form throughout accretion and major impact events. This hypothesis is supported by similarities in the abundance and the isotope ratios of water between the oldest known carbonaceous chondrite meteorites and meteorites from Vesta, both of which originate from the Solar System's asteroid belt. It is also supported by studies of osmium isotope ratios, which suggest that a sizeable quantity of water was contained in the material that Earth accreted early on. Measurements of the chemical composition of lunar samples collected by the Apollo 15 and 17 missions further support this, and indicate that water was already present on Earth before the Moon was formed.

[ "Astronomy", "Hydrology", "Astrobiology" ]
Parent Topic
Child Topic
    No Parent Topic