language-icon Old Web
English
Sign In

Toll-like receptor

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single, membrane-spanning, non-catalytic receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have breached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13, though the last three are not found in humans. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single, membrane-spanning, non-catalytic receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have breached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13, though the last three are not found in humans. TLR's received their name from their similarity to the protein coded by the toll gene identified in Drosophila in 1985 by Christiane Nüsslein-Volhard and Eric Wieschaus. The ability of immune system to recognize molecules that are broadly shared by pathogens is, in part, due to the presence of Immune receptors called toll-like receptors (TLRs) that are expressed on the membranes of leukocytes including dendritic cells, macrophages, natural killer cells, cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, and fibroblasts). The binding of ligands - either in the form of adjuvant used in vaccinations or in the form of invasive moieties during times of natural infection - to the TLR marks the key molecular events that ultimately lead to innate immune responses and the development of antigen-specific acquired immunity. Upon activation, TLRs recruit adapter proteins (proteins that mediate other protein-protein interactions) within the cytosol of the immune cell in order to propagate the antigen-induced signal transduction pathway. These recruited proteins are then responsible for the subsequent activation of other downstream proteins, including protein kinases (IKKi, IRAK1, IRAK4, and TBK1) that further amplify the signal and ultimately lead to the upregulation or suppression of genes that orchestrate inflammatory responses and other transcriptional events. Some of these events lead to cytokine production, proliferation, and survival, while others lead to greater adaptive immunity. If the ligand is a bacterial factor, the pathogen might be phagocytosed and digested, and its antigens presented to CD4+ T cells.In the case of a viral factor, the infected cell may shut off its protein synthesis and may undergo programmed cell death (apoptosis). Immune cells that have detected a virus may also release anti-viral factors such as interferons. Toll-like receptors have also been shown to be an important link between innate and adaptive immunity through their presence in dendritic cells. Flagellin, a TLR5 ligand, induces cytokine secretion on interacting with TLR5 on human T cells. TLRs are a type of pattern recognition receptor (PRR) and recognize molecules that are broadly shared by pathogens but distinguishable from host molecules, collectively referred to as pathogen-associated molecular patterns (PAMPs). TLRs together with the Interleukin-1 receptors form a receptor superfamily, known as the 'interleukin-1 receptor / toll-like receptor superfamily'; all members of this family have in common a so-called TIR (toll-IL-1 receptor) domain. Three subgroups of TIR domains exist. Proteins with subgroup 1 TIR domains are receptors for interleukins that are produced by macrophages, monocytes, and dendritic cells and all have extracellular Immunoglobulin (Ig) domains. Proteins with subgroup 2 TIR domains are classical TLRs, and bind directly or indirectly to molecules of microbial origin. A third subgroup of proteins containing TIR domains consists of adaptor proteins that are exclusively cytosolic and mediate signaling from proteins of subgroups 1 and 2. TLRs are present in vertebrates, as well as in invertebrates. Molecular building blocks of the TLRs are represented in bacteria and in plants, and plant pattern recognition receptors are well known to be required for host defence against infection. The TLRs thus appear to be one of the most ancient, conserved components of the immune system.

[ "Innate immune system", "TIRAP", "Interleukin-1 receptor–associated kinase 4 deficiency", "Lymphocyte antigen 96", "UNC93B1", "TLR7 Receptor" ]
Parent Topic
Child Topic
    No Parent Topic