language-icon Old Web
English
Sign In

Enceladus

Enceladus (/ɛnˈsɛlədəs/; en-SEL-ə-dəs) is the sixth-largest moon of Saturn. It is about 500 kilometers (310 mi) in diameter, about a tenth of that of Saturn's largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon only reaches −198 °C (−324 °F), far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide range of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrains. Enceladus was discovered on August 28, 1789, by William Herschel, but little was known about it until the two Voyager spacecraft, Voyager 1 and Voyager 2, passed nearby in the early 1980s. In 2005, the Cassini spacecraft started multiple close flybys of Enceladus, revealing its surface and environment in greater detail. In particular, Cassini discovered water-rich plumes venting from the south polar region. Cryovolcanoes near the south pole shoot geyser-like jets of water vapor, molecular hydrogen, other volatiles, and solid material, including sodium chloride crystals and ice particles, into space, totaling about 200 kg (440 lb) per second. Over 100 geysers have been identified. Some of the water vapor falls back as 'snow'; the rest escapes, and supplies most of the material making up Saturn's E ring. According to NASA scientists, the plumes are similar in composition to comets. In 2014, NASA reported that Cassini found evidence for a large south polar subsurface ocean of liquid water with a thickness of around 10 km (6 mi). These geyser observations, along with the finding of escaping internal heat and very few (if any) impact craters in the south polar region, show that Enceladus is currently geologically active. Like many other satellites in the extensive systems of the giant planets, Enceladus is trapped in an orbital resonance. Its resonance with Dione excites its orbital eccentricity, which is damped by tidal forces, tidally heating its interior and driving the geological activity. On 27 June 2018, scientists reported the detection of complex macromolecular organics on Enceladus' jet plumes, as sampled by the Cassini orbiter. Enceladus was discovered by William Herschel on August 28, 1789, during the first use of his new 1.2 m (47 in) 40-foot telescope, then the largest in the world, at Observatory House in Slough, England. Its faint apparent magnitude (HV = +11.7) and its proximity to the much brighter Saturn and Saturn's rings make Enceladus difficult to observe from Earth with smaller telescopes. Like many satellites of Saturn discovered prior to the Space Age, Enceladus was first observed during a Saturnian equinox, when Earth is within the ring plane. At such times, the reduction in glare from the rings makes the moons easier to observe. Prior to the Voyager missions the view of Enceladus improved little from the dot first observed by Herschel. Only its orbital characteristics were known, with estimations of its mass, density and albedo. Enceladus is named after the giant Enceladus of Greek mythology. The name, like the names of each of the first seven satellites of Saturn to be discovered, was suggested by William Herschel's son John Herschel in his 1847 publication Results of Astronomical Observations made at the Cape of Good Hope. He chose these names because Saturn, known in Greek mythology as Cronus, was the leader of the Titans. Features on Enceladus are named by the International Astronomical Union (IAU) after characters and places from Burton's translation of The Book of One Thousand and One Nights. Impact craters are named after characters, whereas other feature types, such as fossae (long, narrow depressions), dorsa (ridges), planitiae (plains), sulci (long parallel grooves), and rupes (cliffs) are named after places. The IAU has officially named 85 features on Enceladus, most recently Samaria Rupes, formerly called Samaria Fossa. Enceladus is one of the major inner satellites of Saturn along with Dione, Tethys, and Mimas. It orbits at 238,000 km from Saturn's center and 180,000 km from its cloud tops, between the orbits of Mimas and Tethys. It orbits Saturn every 32.9 hours, fast enough for its motion to be observed over a single night of observation. Enceladus is currently in a 2:1 mean-motion orbital resonance with Dione, completing two orbits around Saturn for every one orbit completed by Dione. This resonance maintains Enceladus's orbital eccentricity (0.0047), which is known as a forced eccentricity. This non-zero eccentricity results in tidal deformation of Enceladus. The dissipated heat resulting from this deformation is the main heating source for Enceladus's geologic activity. Enceladus orbits within the densest part of Saturn's E ring, the outermost of its major rings, and is the main source of the ring's material composition.

[ "Satellite", "Saturn", "Solar System", "Astronomy", "Astrobiology", "Enceladus Explorer", "Cryovolcano", "Moons of Saturn" ]
Parent Topic
Child Topic
    No Parent Topic