language-icon Old Web
English
Sign In

Backward chaining

Backward chaining (or backward reasoning) is an inference method described colloquially as working backward from the goal. It is used in automated theorem provers, inference engines, proof assistants, and other artificial intelligence applications. Backward chaining (or backward reasoning) is an inference method described colloquially as working backward from the goal. It is used in automated theorem provers, inference engines, proof assistants, and other artificial intelligence applications. In game theory, researchers apply it to (simpler) subgames to find a solution to the game, in a process called backward induction. In chess, it is called retrograde analysis, and it is used to generate table bases for chess endgames for computer chess. Backward chaining is implemented in logic programming by SLD resolution. Both rules are based on the modus ponens inference rule. It is one of the two most commonly used methods of reasoning with inference rules and logical implications – the other is forward chaining. Backward chaining systems usually employ a depth-first search strategy, e.g. Prolog. Backward chaining starts with a list of goals (or a hypothesis) and works backwards from the consequent to the antecedent to see if any data supports any of these consequents. An inference engine using backward chaining would search the inference rules until it finds one with a consequent (Then clause) that matches a desired goal. If the antecedent (If clause) of that rule is known to be true, then it is added to the list of goals (for one's goal to be confirmed one must also provide data that confirms this new rule).

[ "Expert system", "Inference", "Inference engine", "Transposition (logic)", "Backward chaining technique", "negation by default" ]
Parent Topic
Child Topic
    No Parent Topic