language-icon Old Web
English
Sign In

Trapped ion quantum computer

A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force). Lasers are applied to induce coupling between the qubit states (for single qubit operations) or coupling between the internal qubit states and the external motional states (for entanglement between qubits). A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force). Lasers are applied to induce coupling between the qubit states (for single qubit operations) or coupling between the internal qubit states and the external motional states (for entanglement between qubits). The fundamental operations of a quantum computer have been demonstrated experimentally with the currently highest accuracy in trapped ion systems. Promising schemes in development to scale the system to arbitrarily large numbers of qubits include transporting ions to spatially distinct locations in an array of ion traps, building large entangled states via photonically connected networks of remotely entangled ion chains, and combinations of these two ideas. This makes the trapped ion quantum computer system one of the most promising architectures for a scalable, universal quantum computer. As of April 2018, the largest number of particles to be controllably entangled is 20 trapped ions. The electrodynamic ion trap currently used in trapped ion quantum computing research was invented in the 1950s by Wolfgang Paul (who received the Nobel Prize for his work in 1989). Charged particles cannot be trapped in 3D by just electrostatic forces because of Earnshaw's theorem. Instead, an electric field oscillating at radio frequency (RF) is applied, forming a potential with the shape of a saddle spinning at the RF frequency. If the RF field has the right parameters (oscillation frequency and field strength), the charged particle becomes effectively trapped at the saddle point by a restoring force, with the motion described by a set of Mathieu equations. This saddle point is the point of minimized energy magnitude, | E ( x → ) | {displaystyle |E({overrightarrow {x}})|} , for the ions in the potential field. The Paul trap is often described as a harmonic potential well that traps ions in two dimensions (assume x ^ {displaystyle {widehat {x}}} and y ^ {displaystyle {widehat {y}}} without loss of generality) and does not trap ions in the z ^ {displaystyle {widehat {z}}} direction. When multiple ions are at the saddle point and the system is at equilibrium, the ions are only free to move in z ^ {displaystyle {widehat {z}}} . Therefore, the ions will repel each other and create a vertical configuration in z ^ {displaystyle {widehat {z}}} , the simplest case being a linear strand of only a few ions. Coulomb interactions of increasing complexity will create a more intricate ion configuration if many ions are initialized in the same trap. Furthermore, the additional vibrations of the added ions greatly complicate the quantum system, which makes initialization and computation more difficult. Once trapped, the ions should be cooled such that k B T << ℏ ω z {displaystyle k_{B}T<<hbar omega _{z}} (see Lamb Dicke regime). This can be achieved by a combination of Doppler cooling and Resolved sideband cooling. At this very low temperature, vibrational energy in the ion trap is quantized into phonons by the energy eigenstates of the ion strand, which are called the center of mass vibrational modes. A single phonon's energy is given by the relation ℏ ω z {displaystyle hbar omega _{z}} . These quantum states occur when the trapped ions vibrate together and are completely isolated from the external environment. If the ions are not properly isolated, noise can result from ions interacting with external electromagnetic fields, which creates random movement and destroys the quantized energy states. The first implementation scheme for a controlled-NOT quantum gate was proposed by Ignacio Cirac and Peter Zoller in 1995, specifically for the trapped ion system. The same year, a key step in the controlled-NOT gate was experimentally realized at NIST Ion Storage Group, and research in quantum computing began to take off worldwide. Many traditional ion trapping research groups have made the transition to quantum computing research, while, more recently, many other new research groups have joined the effort. An enormous amount of progress in this field has been made in the past decade and trapped ions remain a leading candidate for quantum computation. The full requirements for a functional quantum computer are not entirely known, but there are many generally accepted requirements. DiVincenzo outlined several of these criterion for quantum computing (see DiVincenzo's criteria).

[ "Quantum error correction", "Cavity quantum electrodynamics", "Quantum simulator", "Quantum network", "Quantum technology" ]
Parent Topic
Child Topic
    No Parent Topic