language-icon Old Web
English
Sign In

C-reactive protein

1B09, 1GNH, 1LJ7, 3L2Y, 3PVN, 3PVO140112944ENSG00000132693ENSMUSG00000037942P02741P14847NM_000567NM_001329057NM_001329058NM_007768NP_000558NP_001315986NP_001315987NP_031794C-reactive protein (CRP) is an annular (ring-shaped), pentameric protein found in blood plasma, whose circulating concentrations rise in response to inflammation. It is an acute-phase protein of hepatic origin that increases following interleukin-6 secretion by macrophages and T cells. Its physiological role is to bind to lysophosphatidylcholine expressed on the surface of dead or dying cells (and some types of bacteria) in order to activate the complement system via C1q.C-reactive proteinC-reactive protein1b09: HUMAN C-REACTIVE PROTEIN COMPLEXED WITH PHOSPHOCHOLINE1gnh: HUMAN C-REACTIVE PROTEIN1lj7: Crystal structure of calcium-depleted human C-reactive protein from perfectly twinned data C-reactive protein (CRP) is an annular (ring-shaped), pentameric protein found in blood plasma, whose circulating concentrations rise in response to inflammation. It is an acute-phase protein of hepatic origin that increases following interleukin-6 secretion by macrophages and T cells. Its physiological role is to bind to lysophosphatidylcholine expressed on the surface of dead or dying cells (and some types of bacteria) in order to activate the complement system via C1q. CRP is synthesized by the liver in response to factors released by macrophages and fat cells (adipocytes). It is a member of the pentraxin family of proteins. It is not related to C-peptide (insulin) or protein C (blood coagulation). C-reactive protein was the first pattern recognition receptor (PRR) to be identified. Discovered by Tillett and Francis in 1930, it was initially thought that CRP might be a pathogenic secretion since it was elevated in a variety of illnesses, including cancer. The later discovery of hepatic synthesis (made in the liver) demonstrated that it is a native protein. Initially, CRP was measured using Quellung reaction which gave a positive or a negative reaction. More precise methods nowadays use dynamic light scattering after reaction with CRP-specific antibodies. CRP was so named because it was first identified as a substance in the serum of patients with acute inflammation that reacted with the antibody against the somatic capsular polysaccharide (C-polysaccharide) of pneumococcus. The CRP gene is located on chromosome 1 (1q23.2). It is a member of the small pentraxins family. The monomer has 224 amino acids, and molecular mass of 25,106 Da. In serum, it assembles into stable pentameric structure with a discoid shape. CRP binds to the phosphocholine expressed on the surface of dead or dying cells and some bacteria. This activates the complement system, promoting phagocytosis by macrophages, which clears necrotic and apoptotic cells and bacteria. This so-called acute phase response occurs as a result of increasing concentrations of IL-6, which is produced by macrophages as well as adipocytes in response to a wide range of acute and chronic inflammatory conditions such as bacterial, viral, or fungal infections; rheumatic and other inflammatory diseases; malignancy; and tissue injury and necrosis. These conditions cause release of interleukin-6 and other cytokines that trigger the synthesis of CRP and fibrinogen by the liver. CRP binds to phosphocholine on micro-organisms. It is thought to assist in complement binding to foreign and damaged cells and enhances phagocytosis by macrophages (opsonin-mediated phagocytosis), which express a receptor for CRP. It plays a role in innate immunity as an early defence system against infections. In healthy adults, the normal concentrations of CRP varies between 0.8 mg/L to 3.0 mg/L. However, some healthy adults show elevated CRP at 10 mg/L. CRP concentrations also increase with age, possibly due to subclinical conditions. There is also no seasonal variations of CRP concentrations. Gene polymorphism of interleukin-1 family, interleukin 6, and polymorphic GT repeat of the CRP gene do affect the usual CRP concentrations when a person does not have any medical illnesses. The plasma half-life of CRP is 19 hours, and is constant in all medical conditions.

[ "Inflammation", "Disease", "Gastroenterology", "Internal medicine", "Endocrinology", "Pentraxins", "C reactive protein test", "Raised CRP", "Serum amyloid P component", "Crohn's Disease Activity Index" ]
Parent Topic
Child Topic
    No Parent Topic