language-icon Old Web
English
Sign In

Sodium hydroxide

LyeAscariteWhite causticSodium hydrideLithium hydroxidePotassium hydroxideRubidium hydroxideSodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−. Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−. Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH2O. The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available 'sodium hydroxide' is often this monohydrate, and published data may refer to it instead of the anhydrous compound. As one of the simplest hydroxides, it is frequently utilized alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students. Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tonnes, while demand was 51 million tonnes. Pure sodium hydroxide is a colorless crystalline solid that melts at 318 °C (604 °F) without decomposition, and with a boiling point of 1,388 °C (2,530 °F). It is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol. NaOH is insoluble in ether and other non-polar solvents. Similar to the hydration of sulfuric acid, dissolution of solid sodium hydroxide in water is a highly exothermic reaction where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing. The resulting solution is usually colorless and odorless. As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils. Sodium hydroxide, NaOH, as a fluid solution, demonstrates a characteristic viscosity, 78 mPa·s that is much greater than water (1.0 mPa·s) and near that of olive oil (85 mPa·s) at room temperature. The viscosity of NaOH, as with any chemical, is inversely related to its service temperature; meaning viscosity decreases as temperature increases, and vice versa. The viscosity of sodium hydroxide plays a direct role in its application as well as its storage. Sodium hydroxide can form several hydrates NaOH·nH2O, which result in a complex solubility diagram that was described in detail by S. U. Pickering in 1893. The known hydrates and the approximate ranges of temperature and concentration (mass percent of NaOH) of their saturated water solutions are: Early reports refer to hydrates with n = 0.5 or n = 2/3, but later careful investigations failed to confirm their existence. The only hydrates with stable melting points are NaOH·H2O (65.10 °C) and NaOH·3.5H2O (15.38 °C). The other hydrates, except the metastable ones NaOH·3H2O and NaOH·4H2O (β) can be crystallized from solutions of the proper composition, as listed above. However, solutions of NaOH can be easily supercooled by many degrees, which allows the formation of hydrates (including the metastable ones) from solutions with different concentrations.

[ "Nuclear chemistry", "Chromatography", "Organic chemistry", "Inorganic chemistry", "Chemical engineering", "ALKALI EXPOSURE", "Alkalization - Treatment", "Sodium chloroacetate", "Sodium product", "Sodium fusion test" ]
Parent Topic
Child Topic
    No Parent Topic