language-icon Old Web
English
Sign In

Bistatic radar

Bistatic radar is the name given to a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a radar in which the transmitter and receiver are collocated is called a monostatic radar. A system containing multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage is called multistatic radar. Many long-range air-to-air and surface-to-air missile systems use semi-active radar homing, which is a form of bistatic radar. Bistatic radar is the name given to a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a radar in which the transmitter and receiver are collocated is called a monostatic radar. A system containing multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage is called multistatic radar. Many long-range air-to-air and surface-to-air missile systems use semi-active radar homing, which is a form of bistatic radar. Some radar systems may have separate transmit and receive antennas, but if the angle subtended between transmitter, target and receiver (the bistatic angle) is close to zero, then they would still be regarded as monostatic or pseudo-monostatic. For example, some very long range HF radar systems may have a transmitter and receiver which are separated by a few tens of kilometres for electrical isolation, but as the expected target range is of the order 1000-3500 km, they are not considered to be truly bistatic and are referred to as pseudo-monostatic. In some configurations, bistatic radars may be designed to operate in a fence-like configuration, detecting targets which pass between the transmitter and receiver, with the bistatic angle near 180 degrees. This is a special case of bistatic radar, known as a forward scatter radar, after the mechanism by which the transmitted energy is scattered by the target. In forward scatter, the scattering can be modeled using Babinet's principle and is a potential countermeasure to stealth aircraft as the radar cross section (RCS) is determined solely by the silhouette of the aircraft seen by the transmitter, and is unaffected by stealth coatings or shapings. The RCS in this mode is calculated as σ=4πA²/λ², where A is the silhouette area and λ is the radar wavelength. However, target may vary from place to place location and tracking is very challenging in forward scatter radars, as the information content in measurements of range, bearing and Doppler becomes very low (all these parameters tend to zero, regardless of the location of the target in the fence).

[ "Radar imaging", "Automatic radar plotting aid", "AN/APY-10", "Low probability of intercept radar", "Early-warning radar", "Semi-active radar homing" ]
Parent Topic
Child Topic
    No Parent Topic