language-icon Old Web
English
Sign In

Euglenid

Euglenids (euglenoids, or euglenophytes, formally Euglenida/Euglenoida, ICZN, or Euglenophyceae, ICBN) are one of the best-known groups of flagellates, which are excavate eukaryotes of the phylum Euglenophyta and their cell structure is typical of that group. They are commonly found in freshwater, especially when it is rich in organic materials, with a few marine and endosymbiotic members. Many euglenids feed by phagocytosis, or strictly by diffusion. A monophyletic group consisting of the mixotrophic species Rapaza viridis and the two groups Eutreptiales and Euglenales have chloroplasts and produce their own food through photosynthesis. This group is known to contain the carbohydrate paramylon. Euglenids split from the others Euglenozoa more than a billion years ago, and are assumed to descend from an ancestor that took up a red alga by secondary endosymbiosis, which was since lost. The plastids in all extant photosynthetic species is the result from secondary endosymbiosis between a phagotrophic eukaryovorous euglenid and a Pyramimonas-related green alga. Euglenoids are distinguished mainly by the presence of a type of cell covering called a pellicle. Within its taxon, the pellicle is one of the euglenoids' most diverse morphological features. The pellicle is composed of proteinaceous strips underneath the cell membrane, supported by dorsal and ventral microtubules. This varies from rigid to flexible, and gives the cell its shape, often giving it distinctive striations. In many euglenids, the strips can slide past one another, causing an inching motion called metaboly. Otherwise, they move using their flagella. The euglenids were first defined by Otto Bütschli in 1884 as the flagellate order Euglenida, as an animal. Botanists subsequently created the algal division Euglenophyta; thus, they were classified as both animals and plants, as they share characteristics with both. Conflicts of this nature are exemplary of why the kingdom Protista was adopted. However, they retained their double-placement until the flagellates were split up, and both names are still used to refer to the group. Their chlorophylls are not masked with accessory pigments. The classification of euglenids is still variable, as groups are being revised to conform with their molecular phylogeny. Classifications have fallen in line with the traditional groups based on differences in nutrition and number of flagella; these provide a starting point for considering euglenid diversity. Different characteristics of the euglenids' pellicles can provide insight into their modes of movement and nutrition. As with other Euglenozoa, the primitive mode of nutrition is phagocytosis. Prey such as bacteria and smaller flagellates are ingested through a cytostome, supported by microtubules. These are often packed together to form two or more rods, which function in ingestion, and in Entosiphon form an extendable siphon. Most phagotrophic euglenids have two flagella, one leading and one trailing. The latter is used for gliding along the substrate. In some, such as Peranema, the leading flagellum is rigid and beats only at its tip. Osmotrophic euglenids are euglenids which have undergone osmotrophy. Due to a lack of characteristics that are useful for taxonomical purposes, the origin of osmotrophic euglenids is unclear, though certain morphological characteristics reveal a small fraction of osmotrophic euglenids are derived from phototrophic and phagotrophic ancestors.

[ "Clade", "Euglenozoa", "Euglena" ]
Parent Topic
Child Topic
    No Parent Topic