language-icon Old Web
English
Sign In

Free-electron laser

A free-electron laser (FEL) is a kind of laser whose lasing medium consists of very-high-speed electrons moving freely through a magnetic structure, hence the term free electron. The free-electron laser is tunable and has the widest frequency range of any laser type, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray. A free-electron laser (FEL) is a kind of laser whose lasing medium consists of very-high-speed electrons moving freely through a magnetic structure, hence the term free electron. The free-electron laser is tunable and has the widest frequency range of any laser type, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray. The free-electron laser was invented by John Madey in 1971 at Stanford University. The free-electron laser utilizes technology developed by Hans Motz and his coworkers, who built an undulator at Stanford in 1953, using the wiggler magnetic configuration which is one component of a free electron laser. Madey used a 43 MeV electron beam and 5 m long wiggler to amplify a signal. To create a FEL, a beam of electrons is accelerated to almost the speed of light. The beam passes through a periodic arrangement of magnets with alternating poles across the beam path, which creates a side to side magnetic field. The direction of the beam is called the longitudinal direction, while the direction across the beam path is called transverse. This array of magnets is called an undulator or a wiggler, because due to the Lorentz force of the field it forces the electrons in the beam to wiggle transversely, traveling along a sinusoidal path about the axis of the undulator. The transverse acceleration of the electrons across this path results in the release of photons (synchrotron radiation), which are monochromatic but still incoherent,because the electromagnetic waves from randomly distributed electrons interfere constructively and destructively in time. The resulting radiation power scales linearly with the number of electrons. Mirrors at each end of the undulator create an optical cavity, causing the radiation to form standing waves, or alternately an external excitation laser is provided.The synchrotron radiation becomes sufficiently strong that the transverse electric field of the radiation beam interacts with the transverse electron current created by the sinusoidal wiggling motion, causing some electrons to gain and others to lose energy to the optical field via the ponderomotive force. This energy modulation evolves into electron density (current) modulations with a period of one optical wavelength. The electrons are thus longitudinally clumped into microbunches, separated by one optical wavelength along the axis. Whereas an undulator alone would cause the electrons to radiate independently (incoherently), the radiation emitted by the bunched electrons is in phase, and the fields add together coherently. The radiation intensity grows, causing additional microbunching of the electrons, which continue to radiate in phase with each other. This process continues until the electrons are completely microbunched and the radiation reaches a saturated power several orders of magnitude higher than that of the undulator radiation.

[ "Electron", "Radiation", "Beam (structure)", "Laser", "Bunching parameter", "Wiggler", "SACLA", "Self-amplified spontaneous emission", "Smith–Purcell effect" ]
Parent Topic
Child Topic
    No Parent Topic