language-icon Old Web
English
Sign In

σ-finite measure

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is the countable union of measurable sets with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite. In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is the countable union of measurable sets with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite. A different but related notion that should not be confused with sigma-finiteness is s-finiteness Let ( X , A ) {displaystyle (X,{mathcal {A}})} be a measurable space and μ {displaystyle mu } a measure on it. The measure μ {displaystyle mu } is called a σ-finite measure, if it satisfies one of the four following equivalent criteria: If μ {displaystyle mu } is a σ {displaystyle sigma } -finite measure, the measure space ( X , A , μ ) {displaystyle (X,{mathcal {A}},mu )} is called a σ {displaystyle sigma } -finite measure space. For example, Lebesgue measure on the real numbers is not finite, but it is σ-finite. Indeed, consider the intervals [k, k + 1) for all integers k; there are countably many such intervals, each has measure 1, and their union is the entire real line. Alternatively, consider the real numbers with the counting measure; the measure of any finite set is the number of elements in the set, and the measure of any infinite set is infinity. This measure is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line. But, the set of natural numbers N {displaystyle mathbb {N} } with the counting measure is σ -finite. Locally compact groups which are σ-compact are σ-finite under Haar measure. For example, all connected, locally compact groups G are σ-compact. To see this, let V be a relatively compact, symmetric (that is V = V−1) open neighborhood of the identity. Then is an open subgroup of G. Therefore H is also closed since its complement is a union of open sets and by connectivity of G, must be G itself. Thus all connected Lie groups are σ-finite under Haar measure.

[ "Hausdorff measure", "Borel measure", "Pushforward measure", "Complete measure", "Regular measure", "Inner regular measure", "Atom (measure theory)" ]
Parent Topic
Child Topic
    No Parent Topic