language-icon Old Web
English
Sign In

Neuroinformatics

Neuroinformatics is a research field concerned with the organization of neuroscience data by the application of computational models and analytical tools. These areas of research are important for the integration and analysis of increasingly large-volume, high-dimensional, and fine-grain experimental data. Neuroinformaticians provide computational tools, mathematical models, and create interoperable databases for clinicians and research scientists. Neuroscience is a heterogeneous field, consisting of many and various sub-disciplines (e.g., cognitive psychology, behavioral neuroscience, and behavioral genetics). In order for our understanding of the brain to continue to deepen, it is necessary that these sub-disciplines are able to share data and findings in a meaningful way; Neuroinformaticians facilitate this. Neuroinformatics is a research field concerned with the organization of neuroscience data by the application of computational models and analytical tools. These areas of research are important for the integration and analysis of increasingly large-volume, high-dimensional, and fine-grain experimental data. Neuroinformaticians provide computational tools, mathematical models, and create interoperable databases for clinicians and research scientists. Neuroscience is a heterogeneous field, consisting of many and various sub-disciplines (e.g., cognitive psychology, behavioral neuroscience, and behavioral genetics). In order for our understanding of the brain to continue to deepen, it is necessary that these sub-disciplines are able to share data and findings in a meaningful way; Neuroinformaticians facilitate this. Neuroinformatics stands at the intersection of neuroscience and information science. Other fields, like genomics, have demonstrated the effectiveness of freely distributed databases and the application of theoretical and computational models for solving complex problems. In Neuroinformatics, such facilities allow researchers to more easily quantitatively confirm their working theories by computational modeling. Additionally, neuroinformatics fosters collaborative research—an important fact that facilitates the field's interest in studying the multi-level complexity of the brain. There are three main directions where neuroinformatics has to be applied:

[ "Machine learning", "Artificial intelligence", "Neuroscience", "Data science", "Neuroscience Information Framework", "NeuroLex", "NeuroNames" ]
Parent Topic
Child Topic
    No Parent Topic