language-icon Old Web
English
Sign In

Taxonomy (general)

Taxonomy is the practice and science of classification. The word is also used as a count noun: a taxonomy, or taxonomic scheme, is a particular classification. The word finds its roots in the Greek language τάξις, taxis (meaning 'order', 'arrangement') and νόμος, nomos ('law' or 'science'). Originally, taxonomy referred only to the classification of organisms or a particular classification of organisms. In a wider, more general sense, it may refer to a classification of things or concepts, as well as to the principles underlying such a classification. Taxonomy is different from meronomy, which is dealing with the classification of parts of a whole.a radical conceptual and systematic change, to reflect the realities of multiple authorship and to buttress accountability. We propose dropping the outmoded notion of author in favor of the more useful and realistic one of contributor.:152 Identifying specific contributions to published research will lead to appropriate credit, fewer author disputes, and fewer disincentives to collaboration and the sharing of data and code.:151The National Academy of Sciences has created a TACS (Transparency in Author Contributions in Science) webpage to list the journals that commit to setting authorship standards, defining responsibilities for corresponding authors, requiring ORCID iDs, and adopting the CRediT taxonomy. Taxonomy is the practice and science of classification. The word is also used as a count noun: a taxonomy, or taxonomic scheme, is a particular classification. The word finds its roots in the Greek language τάξις, taxis (meaning 'order', 'arrangement') and νόμος, nomos ('law' or 'science'). Originally, taxonomy referred only to the classification of organisms or a particular classification of organisms. In a wider, more general sense, it may refer to a classification of things or concepts, as well as to the principles underlying such a classification. Taxonomy is different from meronomy, which is dealing with the classification of parts of a whole. Many taxonomies have a hierarchical structure, but this is not a requirement. Taxonomy uses taxonomic units, known as 'taxa' (singular 'taxon'). Wikipedia categories illustrate a taxonomy and a full taxonomy of Wikipedia categories can be extracted by automatic means. As of 2009, it has been shown that a manually-constructed taxonomy, such as that of computational lexicons like WordNet, can be used to improve and restructure the Wikipedia category taxonomy. In a broader sense, taxonomy also applies to relationship schemes other than parent-child hierarchies, such as network structures. Taxonomies may then include single children with multi-parents, for example, 'Car' might appear with both parents 'Vehicle' and 'Steel Mechanisms'; to some however, this merely means that 'car' is a part of several different taxonomies. A taxonomy might also simply be organization of kinds of things into groups, or an alphabetical list; here, however, the term vocabulary is more appropriate. In current usage within knowledge management, taxonomies are considered narrower than ontologies since ontologies apply a larger variety of relation types. Mathematically, a hierarchical taxonomy is a tree structure of classifications for a given set of objects. It is also named containment hierarchy. At the top of this structure is a single classification, the root node, that applies to all objects. Nodes below this root are more specific classifications that apply to subsets of the total set of classified objects. The progress of reasoning proceeds from the general to the more specific. By contrast, in the context of legal terminology, an open-ended contextual taxonomy is employed—a taxonomy holding only with respect to a specific context. In scenarios taken from the legal domain, a formal account of the open-texture of legal terms is modeled, which suggests varying notions of the 'core' and 'penumbra' of the meanings of a concept. The progress of reasoning proceeds from the specific to the more general. Anthropologists have observed that taxonomies are generally embedded in local cultural and social systems, and serve various social functions. Perhaps the most well-known and influential study of folk taxonomies is Émile Durkheim's The Elementary Forms of Religious Life. A more recent treatment of folk taxonomies (including the results of several decades of empirical research) and the discussion of their relation to the scientific taxonomy can be found in Scott Atran's Cognitive Foundations of Natural History. Folk taxonomies of organisms have been found in large part to agree with scientific classification, at least for the larger and more obvious species, which means that it is not the case that folk taxonomies are based purely on utilitarian characteristics. In the seventeenth century the German mathematician and philosopher Gottfried Leibniz, following the work of the thirteenth-century Majorcan philosopher Ramon Llull on his Ars generalis ultima, a system for procedurally generating concepts by combining a fixed set of ideas, sought to develop an alphabet of human thought. Leibniz intended his characteristica universalis to be an 'algebra' capable of expressing all conceptual thought. The concept of creating such a 'universal language' was frequently examined in the 17th century, also notably by the English philosopher John Wilkins in his work An Essay towards a Real Character and a Philosophical Language (1668), from which the classification scheme in Roget's Thesaurus ultimately derives. Vegas et al. make a compelling case to advance the knowledge in the field of software engineering through the use of taxonomies. Similarly, Ore et al. provide a systematic methodology to approach taxonomy building in software engineering related topics.

[ "Taxonomy (biology)", "Linguistics", "Artificial intelligence", "Meronomy", "Automatic taxonomy induction", "Corporate taxonomy", "Bloom's taxonomy" ]
Parent Topic
Child Topic
    No Parent Topic