language-icon Old Web
English
Sign In

Hydroformylation

Hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: Production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resulting aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and drugs. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry. The process entails treatment of an alkene typically with high pressures (between 10 and 100 atmospheres) of carbon monoxide and hydrogen at temperatures between 40 and 200 °C. Transition metal catalysts are required. Invariably, the catalyst dissolves in the reaction medium, i.e. hydroformylation is an example of homogeneous catalysis. The process was discovered by the German chemist Otto Roelen in 1938 in the course of investigations of the Fischer-Tropsch process. Aldehydes and diethylketone were obtained when ethylene was added to an F-T reactor. Through these studies, Roelen discovered the utility of cobalt catalysts. HCo(CO)4, which had been isolated only a few years prior to Roelen's work, was shown to be an excellent catalyst. The term oxo synthesis was coined by the Ruhrchemie patent department, who expected the process to be applicable to the preparation of both aldehydes and ketones. Subsequent work demonstrated that the ligand tributylphosphine (PBu3) improved the selectivity of the cobalt-catalysed process. The mechanism of Co-catalyzed hydroformylation was elucidated by Richard F. Heck and David Breslow in the 1960s. In 1968s, highly active rhodium-based catalysts were reported. Since the 1970s, most hydroformylation relies on catalysts based on rhodium. Water-soluble catalysts have been developed. They facilitate the separation of the products from the catalyst. A key consideration of hydroformylation is the 'normal' vs. 'iso' selectivity. For example, the hydroformylation of propylene can afford two isomeric products, butyraldehyde or isobutyraldehyde:

[ "Rhodium", "TPPTS", "Oxo alcohol", "1-Dodecene", "Cobalt hydrocarbonyl", "Ziegler process" ]
Parent Topic
Child Topic
    No Parent Topic