language-icon Old Web
English
Sign In

Constraint satisfaction

In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution to a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution to a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered. Often used are constraints on a finite domain, to the point that constraint satisfaction problems are typically identified with problems based on constraints on a finite domain. Such problems are usually solved via search, in particular a form of backtracking or local search. Constraint propagation are other methods used on such problems; most of them are incomplete in general, that is, they may solve the problem or prove it unsatisfiable, but not always. Constraint propagation methods are also used in conjunction with search to make a given problem simpler to solve. Other considered kinds of constraints are on real or rational numbers; solving problems on these constraints is done via variable elimination or the simplex algorithm. Constraint satisfaction originated in the field of artificial intelligence in the 1970s (see for example (Laurière 1978)). During the 1980s and 1990s, embedding of constraints into a programming language were developed. Languages often used for constraint programming are Prolog and C++. As originally defined in artificial intelligence, constraints enumerate the possible values a set of variables may take in a given world. A possible world is a total assignment of values to variables representing a way the world (real or imaginary) could be. Informally, a finite domain is a finite set of arbitrary elements. A constraint satisfaction problem on such domain contains a set of variables whose values can only be taken from the domain, and a set of constraints, each constraint specifying the allowed values for a group of variables. A solution to this problem is an evaluation of the variables that satisfies all constraints. In other words, a solution is a way for assigning a value to each variable in such a way that all constraints are satisfied by these values.

[ "Algorithm", "Theoretical computer science", "Discrete mathematics", "Mathematical optimization", "Artificial intelligence", "boolean constraint", "constraint reasoning", "asynchronous weak commitment", "Local consistency", "Constraint (mathematics)" ]
Parent Topic
Child Topic
    No Parent Topic