language-icon Old Web
English
Sign In

Mechanosynthesis

Mechanosynthesis is a term for hypothetical chemical syntheses in which reaction outcomes are determined by the use of mechanical constraints to direct reactive molecules to specific molecular sites. There are presently no non-biological chemical syntheses which achieve this aim. Some atomic placement has been achieved with scanning tunnelling microscopes. Mechanosynthesis is a term for hypothetical chemical syntheses in which reaction outcomes are determined by the use of mechanical constraints to direct reactive molecules to specific molecular sites. There are presently no non-biological chemical syntheses which achieve this aim. Some atomic placement has been achieved with scanning tunnelling microscopes. In conventional chemical synthesis or chemosynthesis, reactive molecules encounter one another through random thermal motion in a liquid or vapor. In a hypothesized process of mechanosynthesis, reactive molecules would be attached to molecular mechanical systems, and their encounters would result from mechanical motions bringing them together in planned sequences, positions, and orientations. It is envisioned that mechanosynthesis would avoid unwanted reactions by keeping potential reactants apart, and would strongly favor desired reactions by holding reactants together in optimal orientations for many molecular vibration cycles. In biology, the ribosome provides an example of a programmable mechanosynthetic device. A non-biological form of mechanochemistry has been performed at cryogenic temperatures using scanning tunneling microscopes. So far, such devices provide the closest approach to fabrication tools for molecular engineering. Broader exploitation of mechanosynthesis awaits more advanced technology for constructing molecular machine systems, with ribosome-like systems as an attractive early objective. Much of the excitement regarding advanced mechanosynthesis regards its potential use in assembly of molecular-scale devices. Such techniques appear to have many applications in medicine, aviation, resource extraction, manufacturing and warfare. Most theoretical explorations of advanced machines of this kind have focused on using carbon, because of the many strong bonds it can form, the many types of chemistry these bonds permit, and utility of these bonds in medical and mechanical applications. Carbon forms diamond, for example, which if cheaply available, would be an excellent material for many machines. It has been suggested, notably by K. Eric Drexler, that mechanosynthesis will be fundamental to molecular manufacturing based on nanofactories capable of building macroscopic objects with atomic precision. The potential for these has been disputed, notably by Nobel Laureate Richard Smalley (who proposed and then critiqued an unworkable approach based on small fingers). The Nanofactory Collaboration, founded by Robert Freitas and Ralph Merkle in 2000, is a focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda specifically aimed at positionally controlled diamond mechanosynthesis and diamondoid nanofactory development.

[ "Ball mill", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Diffraction" ]
Parent Topic
Child Topic
    No Parent Topic