language-icon Old Web
English
Sign In

Gas constant

The gas constant is also known as the molar, universal, or ideal gas constant, denoted by the symbol R or R and is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole, i.e. the pressure–volume product, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation. The gas constant is also known as the molar, universal, or ideal gas constant, denoted by the symbol R or R and is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole, i.e. the pressure–volume product, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation. Physically, the gas constant is the constant of proportionality that happens to relate the energy scale in physics to the temperature scale, when a mole of particles at the stated temperature is being considered. Thus, the value of the gas constant ultimately derives from historical decisions and accidents in the setting of the energy and temperature scales, plus similar historical setting of the value of the molar scale used for the counting of particles. The last factor is not a consideration in the value of the Boltzmann constant, which does a similar job of equating linear energy and temperature scales. Since the 2019 redefinition of SI base units, which came into effect on 20 May 2019, the value of the gas constant is exactly 8.31446261815324 J⋅K−1⋅mol−1. It is equal to the product of two of the SI defining constants, the Boltzmann constant and the Avogadro constant. Some have suggested that it might be appropriate to name the symbol R the Regnault constant in honour of the French chemist Henri Victor Regnault, whose accurate experimental data were used to calculate the early value of the constant; however, the origin of the letter R to represent of the constant is elusive. The gas constant occurs in the ideal gas law, as follows: where P is the absolute pressure (SI unit pascals), V is the volume of gas (SI unit cubic metres), n is the amount of gas (SI unit moles), m is the mass (SI unit kilograms) contained in V, and T is the thermodynamic temperature (SI unit kelvins). Rspecific is the molar-weight-specific gas constant, discussed below. The gas constant is expressed in the same physical units as molar entropy and molar heat capacity. From the ideal gas law PV = nRT we get: where P is pressure, V is volume, n is number of moles of a given substance, and T is temperature.

[ "Mechanics", "Quantum mechanics", "Thermodynamics", "Analytical chemistry", "Faraday constant" ]
Parent Topic
Child Topic
    No Parent Topic