language-icon Old Web
English
Sign In

Von Willebrand disease

Von Willebrand disease (vWD) is the most common hereditary blood-clotting disorder in humans. An acquired form can sometimes result from other medical conditions. It arises from a deficiency in the quality or quantity of von Willebrand factor (vWF), a multimeric protein that is required for platelet adhesion. As well as humans, it is known to affect several breeds of dogs. The three forms of vWD are: hereditary, acquired, and pseudo or platelet type. The three types of hereditary vWD are: vWD type 1, vWD type 2, and vWD type 3. Type 2 contains various subtypes. Platelet type vWD is also an inherited condition. In 2008 a new diagnostic category of 'Low VWF' was proposed to include those individuals whose Von Willebrand Factor levels were below the normal reference range but not low enough to be Von Willebrand Disease (levels in the 30-50 IU/dL range). Von Willebrand disease (vWD) is the most common hereditary blood-clotting disorder in humans. An acquired form can sometimes result from other medical conditions. It arises from a deficiency in the quality or quantity of von Willebrand factor (vWF), a multimeric protein that is required for platelet adhesion. As well as humans, it is known to affect several breeds of dogs. The three forms of vWD are: hereditary, acquired, and pseudo or platelet type. The three types of hereditary vWD are: vWD type 1, vWD type 2, and vWD type 3. Type 2 contains various subtypes. Platelet type vWD is also an inherited condition. In 2008 a new diagnostic category of 'Low VWF' was proposed to include those individuals whose Von Willebrand Factor levels were below the normal reference range but not low enough to be Von Willebrand Disease (levels in the 30-50 IU/dL range). Patients with Low VWF can experience bleeding, despite mild reductions in VWF levels. vWD type 1 is the most common type of the disorder, with mild bleeding symptoms such as nosebleeds and occasionally more severe symptoms can occur. Blood type can affect the presentation and severity of symptoms of vWD. vWD type 2 is the second most common type of the disorder and has mild to moderate symptoms. It is named after the Finnish physician Erik Adolf von Willebrand who first described the condition in 1926. The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth. Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3. The vWF gene is located on the short arm p of chromosome 12 (12p13.2). It has 52 exons spanning 178kbp. Types 1 and 2 are inherited as autosomal dominant traits. Occasionally, type 2 also inherits recessively. Type 3 is inherited as autosomal recessive. However, some individuals heterozygous for type 3 may be diagnosed of vWD type 1, indicating an intermediate inheritance in that cases. vWD occurs in approximately 1% of the population and affects men and women equally. Von Willebrand factor is mainly active in conditions of high blood flow and shear stress. Deficiency of vWF, therefore, shows primarily in organs with extensive small vessels, such as skin, gastrointestinal tract, and uterus. In angiodysplasia, a form of telangiectasia of the colon, shear stress is much higher than in average capillaries, and the risk of bleeding is increased concomitantly. In more severe cases of type 1 vWD, genetic changes are common within the vWF gene and are highly penetrant. In milder cases of type 1 vWD, a complex spectrum of molecular pathology may exist in addition to polymorphisms of the vWF gene alone. The individual's ABO blood group can influence presentation and pathology of vWD. Those individuals with blood group O have a lower mean level than individuals with other blood groups. Unless ABO group–specific vWF:antigen reference ranges are used, normal group O individuals can be diagnosed as type I vWD, and some individuals of blood group AB with a genetic defect of vWF may have the diagnosis overlooked because vWF levels are elevated due to blood group. When vWD is suspected, blood plasma of a patient must be investigated for quantitative and qualitative deficiencies of vWF. This is achieved by measuring the amount of vWF in a vWF antigen assay and the functionality of vWF with a glycoprotein (GP)Ib binding assay, a collagen binding assay, or a ristocetin cofactor activity (RiCof) or ristocetin induced platelet agglutination (RIPA) assays. Factor VIII levels are also performed because factor VIII is bound to vWF which protects the factor VIII from rapid breakdown within the blood. Deficiency of vWF can then lead to a reduction in factor VIII levels, which explains the elevation in PTT. Normal levels do not exclude all forms of vWD, particularly type 2, which may only be revealed by investigating platelet interaction with subendothelium under flow, a highly specialized coagulation study not routinely performed in most medical laboratories. A platelet aggregation assay will show an abnormal response to ristocetin with normal responses to the other agonists used. A platelet function assay may give an abnormal collagen/epinephrine closure time, and in most cases, a normal collagen/ADP time. Type 2N may be considered if factor VIII levels are disproportionately low, but confirmation requires a 'factor VIII binding' assay. Additional laboratory tests that help classify sub-types of vWD include von-willebrand multimer analysis, modified ristocetin induced platelet aggregation assay and vWF propeptide to vWF antigen ratio propeptide. In cases of suspected acquired von-Willebrand syndrome, a mixing study (analysis of patient plasma along with pooled normal plasma/PNP and a mixture of the two tested immediately, at one hour, and at two hours) should be performed. Detection of vWD is complicated by vWF being an acute phase reactant with levels rising in infection, pregnancy, and stress.

[ "Von Willebrand factor", "Ristocetin-induced platelet aggregation", "Von Willebrand Factor Gene", "Pseudo von Willebrand disease", "Ristocetin Cofactor", "Von Willebrand factor ristocetin cofactor" ]
Parent Topic
Child Topic
    No Parent Topic