language-icon Old Web
English
Sign In

Nanotechnology

Nanotechnology ('nanotech') is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form 'nanotechnologies' as well as 'nanoscale technologies' to refer to the broad range of research and applications whose common trait is size. Nanotechnology as defined by size is naturally very broad, including fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage, microfabrication, molecular engineering, etc. The associated research and applications are equally diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in nanomedicine, nanoelectronics, biomaterials energy production, and consumer products. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials, and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted. The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There's Plenty of Room at the Bottom, in which he described the possibility of synthesis via direct manipulation of atoms. The term 'nano-technology' was first used by Norio Taniguchi in 1974, though it was not widely known. Inspired by Feynman's concepts, K. Eric Drexler used the term 'nanotechnology' in his 1986 book Engines of Creation: The Coming Era of Nanotechnology, which proposed the idea of a nanoscale 'assembler' which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control. Also in 1986, Drexler co-founded The Foresight Institute (with which he is no longer affiliated) to help increase public awareness and understanding of nanotechnology concepts and implications. Thus, emergence of nanotechnology as a field in the 1980s occurred through convergence of Drexler's theoretical and public work, which developed and popularized a conceptual framework for nanotechnology, and high-visibility experimental advances that drew additional wide-scale attention to the prospects of atomic control of matter. Since the popularity spike in the 1980s, most of nanotechnology has involved investigation of several approaches to making mechanical devices out of a small number of atoms. In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era. First, the invention of the scanning tunneling microscope in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope's developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986. Binnig, Quate and Gerber also invented the analogous atomic force microscope that year. Second, Fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert Curl, who together won the 1996 Nobel Prize in Chemistry. C60 was not initially described as nanotechnology; the term was used regarding subsequent work with related graphene tubes (called carbon nanotubes and sometimes called Bucky tubes) which suggested potential applications for nanoscale electronics and devices. The discovery of carbon nanotubes is largely attributed to Sumio Iijima of NEC in 1991, for which Iijima won the inaugural 2008 Kavli Prize in Nanoscience.

[ "Materials science", "self assembling", "Nanoionic device", "Boron nitride", "FREDFET", "Bionic contact lens" ]
Parent Topic
Child Topic
    No Parent Topic