language-icon Old Web
English
Sign In

Solar rotation

Solar rotation varies with latitude. The Sun is not a solid body, but is composed of a gaseous plasma. Different latitudes rotate at different periods (differential rotation). The source of this differential rotation is an area of current research in solar astronomy. The rate of surface rotation is observed to be the fastest at the equator (latitude φ = 0°) and to decrease as latitude increases. The solar rotation period is 24.47 days at the equator and almost 38 days at the poles. Solar rotation varies with latitude. The Sun is not a solid body, but is composed of a gaseous plasma. Different latitudes rotate at different periods (differential rotation). The source of this differential rotation is an area of current research in solar astronomy. The rate of surface rotation is observed to be the fastest at the equator (latitude φ = 0°) and to decrease as latitude increases. The solar rotation period is 24.47 days at the equator and almost 38 days at the poles. The differential rotation rate is usually described by the equation: where ω is the angular velocity in degrees per day, φ is the solar latitude and A, B, and C are constants. The values of A, B, and C differ depending on the techniques used to make the measurement, as well as the time period studied. A current set of accepted average values is: At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth. The synodic period is longer because the Sun must rotate for a sidereal period plus an extra amount due to the orbital motion of Earth around the Sun. Note that astrophysical literature does not typically use the equatorial rotation period, but instead often uses the definition of a Carrington rotation: a synodic rotation period of 27.2753 days or a sidereal period of 25.38 days. This chosen period roughly corresponds to the prograde rotation at a latitude of 26° north or south, which is consistent with the typical latitude of sunspots and corresponding periodic solar activity. When the Sun is viewed from the 'north' (above Earth's north pole), solar rotation is counterclockwise (eastward). To a person standing on the North Pole, sunspots would appear to move from left to right across the Sun's face. Bartels' Rotation Number is a serial count that numbers the apparent rotations of the Sun as viewed from Earth, and is used to track certain recurring or shifting patterns of solar activity. For this purpose, each rotation has a length of exactly 27 days, close to the synodic Carrington rotation rate. Julius Bartels arbitrarily assigned rotation one day one to 8 February 1832. The serial number serves as a kind of calendar to mark the recurrence periods of solar and geophysical parameters. The Carrington rotation is a system for comparing locations on the Sun over a period of time, allowing the following of sunspot groups or reappearance of eruptions at a later time. Because the Solar rotation is variable with latitude, depth and time, any such system is necessarily arbitrary and only makes comparison meaningful over moderate periods of time. Solar rotation is arbitrarily taken to be 27.2753 days for the purpose of Carrington rotations. Each rotation of the Sun under this scheme is given a unique number called the Carrington Rotation Number, starting from November 9, 1853. (The Bartels Rotation Number is a similar numbering scheme that uses a period of exactly 27 days and starts from February 8, 1832.) The heliographic longitude of a solar feature conventionally refers to its angular distance relative to the central meridian, i.e. that which the Sun-Earth line defines.The 'Carrington longitude' of the same feature refers it to an arbitrary fixed reference point of an imagined rigid rotation, as defined originally by Carrington. Richard Christopher Carrington determined the solar rotation rate from low latitude sunspots in the 1850s and arrived at 25.38 days for the sidereal rotation period. Sidereal rotation is measured relative to the stars, but because the Earth is orbiting the Sun, we see this period as 27.2753 days.

[ "Sunspot", "Solar cycle", "Magnetic field", "Solar physics", "Rotation" ]
Parent Topic
Child Topic
    No Parent Topic