language-icon Old Web
English
Sign In

Magma

Magma (from Ancient Greek μάγμα (mágma) meaning 'thick unguent') is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion (e.g., an igneous dike or a sill). While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland (see Magma usage for energy production), and once in Hawaii. Magma (from Ancient Greek μάγμα (mágma) meaning 'thick unguent') is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion (e.g., an igneous dike or a sill). While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland (see Magma usage for energy production), and once in Hawaii. Most magmatic liquids are rich in silica. Silicate melts are composed mainly of silicon, oxygen, aluminium, iron, magnesium, calcium, sodium, and potassium. The physical behaviours of melts depend upon their atomic structures as well as upon temperature and pressure and composition. Viscosity is a key melt property in understanding the behaviour of magmas. More silica-rich melts are typically more polymerized, with more linkage of silica tetrahedra, and so are more viscous. Dissolution of water drastically reduces melt viscosity. Higher-temperature melts are less viscous. Generally speaking, more mafic magmas, such as those that form basalt, are hotter and less viscous than more silica-rich magmas, such as those that form rhyolite. Low viscosity leads to gentler, less explosive eruptions.

[ "Petrology", "Geophysics", "Geochemistry", "Geomorphology", "Paleontology", "Silicic", "Layered intrusion", "Roof pendant", "Incompatible element", "Country rock" ]
Parent Topic
Child Topic
    No Parent Topic