language-icon Old Web
English
Sign In

Momentum

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction in three-dimensional space. If m is an object's mass and v is the velocity (also a vector), then the momentum is In SI units, it is measured in kilogram meters per second (kg⋅m/s). Newton's second law of motion states that a body's rate of change in momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total linear momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry. Advanced formulations of classical mechanics, Lagrangian and Hamiltonian mechanics, allow one to choose coordinate systems that incorporate symmetries and constraints. In these systems the conserved quantity is generalized momentum, and in general this is different from the kinetic momentum defined above. The concept of generalized momentum is carried over into quantum mechanics, where it becomes an operator on a wave function. The momentum and position operators are related by the Heisenberg uncertainty principle. In continuous systems such as electromagnetic fields, fluids and deformable bodies, a momentum density can be defined, and a continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids. Momentum is a vector quantity: it has both magnitude and direction. Since momentum has a direction, it can be used to predict the resulting direction and speed of motion of objects after they collide. Below, the basic properties of momentum are described in one dimension. The vector equations are almost identical to the scalar equations (see multiple dimensions). The momentum of a particle is conventionally represented by the letter p. It is the product of two quantities, the particle's mass (represented by the letter m) and its velocity (v): The unit of momentum is the product of the units of mass and velocity. In SI units, if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per second (g⋅cm/s).

[ "Mechanics", "Quantum mechanics", "Conservation of mass", "conservation equations", "Transverse mass", "momentum conservation", "momentum balance" ]
Parent Topic
Child Topic
    No Parent Topic