language-icon Old Web
English
Sign In

Galactic habitable zone

In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life might most likely develop. More specifically, the concept of a galactic habitable zone incorporates various factors, such as metallicity and the rate of major catastrophes such as supernovae, to calculate which regions of the galaxy are more likely to form terrestrial planets, initially develop simple life, and provide a suitable environment for this life to evolve and advance. According to research published in August 2015, very large galaxies may favor the birth and development of habitable planets more than smaller galaxies such as the Milky Way. In the case of the Milky Way, its galactic habitable zone is commonly believed to be an annulus with an outer radius of about 10 kiloparsecs and an inner radius close to the Galactic Center (with both radii lacking hard boundaries). In astrobiology and planetary astrophysics, the galactic habitable zone is the region of a galaxy in which life might most likely develop. More specifically, the concept of a galactic habitable zone incorporates various factors, such as metallicity and the rate of major catastrophes such as supernovae, to calculate which regions of the galaxy are more likely to form terrestrial planets, initially develop simple life, and provide a suitable environment for this life to evolve and advance. According to research published in August 2015, very large galaxies may favor the birth and development of habitable planets more than smaller galaxies such as the Milky Way. In the case of the Milky Way, its galactic habitable zone is commonly believed to be an annulus with an outer radius of about 10 kiloparsecs and an inner radius close to the Galactic Center (with both radii lacking hard boundaries). Galactic habitable-zone theory has been criticized due to an inability to quantify accurately the factors making a region of a galaxy favorable for the emergence of life. In addition, computer simulations suggest that stars may change their orbits around the galactic center significantly, therefore challenging at least part of the view that some galactic areas are necessarily more life-supporting than others. The idea of the circumstellar habitable zone was introduced in 1953 by Hubertus Strughold and Harlow Shapley and in 1959 by Su-Shu Huang as the region around a star in which an orbiting planet could retain water at its surface. From the 1970s, planetary scientists and astrobiologists began to consider various other factors required for the creation and sustenance of life, including the impact that a nearby supernova may have on life's development. In 1981, computer scientist Jim Clarke proposed that the apparent lack of extraterrestrial civilizations in the Milky Way could be explained by Seyfert-type outbursts from an active galactic nucleus, with Earth alone being spared from this radiation by virtue of its location in the galaxy. In the same year, Wallace Hampton Tucker analyzed galactic habitability in a more general context, but later work superseded his proposals. Modern galactic habitable-zone theory was introduced in 1986 by L.S. Marochnik and L.M. Mukhin, who defined the zone as the region in which intelligent life could flourish. Donald Brownlee and palaeontologist Peter Ward expanded upon the concept of a galactic habitable zone, as well as the other factors required for the emergence of complex life, in their 2000 book Rare Earth: Why Complex Life is Uncommon in the Universe. In that book, the authors used the galactic habitable zone, among other factors, to argue that intelligent life is not a common occurrence in the Universe. The idea of a galactic habitable zone was further developed in 2001 in a paper by Ward and Brownlee, in collaboration with Guillermo Gonzalez of the University of Washington. In that paper, Gonzalez, Brownlee, and Ward stated that regions near the galactic halo would lack the heavier elements required to produce habitable terrestrial planets, thus creating an outward limit to the size of the galactic habitable zone. Being too close to the galactic center, however, would expose an otherwise habitable planet to numerous supernovae and other energetic cosmic events, as well as excessive cometary impacts caused by perturbations of the host star's Oort cloud. Therefore, the authors established an inner boundary for the galactic habitable zone, located just outside the galactic bulge. In order to identify a location in the galaxy as being a part of the galactic habitable zone, a variety of factors must be accounted for. These include the distribution of stars and spiral arms, the presence or absence of an active galactic nucleus, the frequency of nearby supernovae that can threaten the existence of life, the metallicity of that location, and other factors. Without fulfilling these factors, a region of the galaxy cannot create or sustain life with efficiency. One of the most basic requirements for the existence of life around a star is the ability of that star to produce a terrestrial planet of sufficient mass to sustain it. Various elements, such as iron, magnesium, titanium, carbon, oxygen, silicon, and others, are required to produce habitable planets, and the concentration and ratios of these vary throughout the galaxy. One important elemental ratio is that of , one of the factors determining the propensity of a region of the galaxy to produce terrestrial planets. The galactic bulge, the region of the galaxy closest to the galactic center, has an distribution peaking at −0.2 decimal exponent units (dex) relative to the Sun's ratio; the thin disk, where the Sun is located, has an average metallicity of −0.02 dex at the orbital distance of the Sun around the galactic center, reducing by 0.07 dex for every additional kiloparsec of orbital distance. The extended thick disk has an average of −0.6 dex, while the halo, the region farthest from the galactic center, has the lowest distribution peak, at around −1.5 dex. In addition, ratios such as , , , and may be relevant to the ability of a region of a galaxy to form habitable terrestrial planets, and of these and are slowly reducing over time, meaning that future terrestrial planets are more likely to possess larger iron cores. In addition to specific amounts of the various stable elements that comprise a terrestrial planet's mass, an abundance of radionuclides such as 40K, 235U, 238U, and 232Th is required in order to heat the planet's interior and power life-sustaining processes such as plate tectonics, volcanism, and a geomagnetic dynamo. The and ratios are dependent on the ratio; however, a general function for the abundance of 40K cannot be created with existing data.

[ "Galactic corona", "Galactic halo", "Circumstellar habitable zone" ]
Parent Topic
Child Topic
    No Parent Topic