language-icon Old Web
English
Sign In

Effective temperature

The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (FBol) as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total (bolometric) luminosity of a star is then L = 4πR2σTeff4, where R is the stellar radius. The definition of the stellar radius is obviously not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius that is defined by a certain value of the Rosseland optical depth (usually 1) within the stellar atmosphere. The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star. The effective temperature of our Sun is around 5780 kelvins (K).Stars have a decreasing temperature gradient, going from their central core up to the atmosphere. The 'core temperature' of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the very cool—by stellar standards—red M stars that radiate heavily in the infrared to the very hot blue O stars that radiate largely in the ultraviolet. The effective temperature of a star indicates the amount of heat that the star radiates per unit of surface area. From the warmest surfaces to the coolest is the sequence of stellar classifications known as O, B, A, F, G, K, M. A red star could be a tiny red dwarf, a star of feeble energy production and a small surface or a bloated giant or even supergiant star such as Antares or Betelgeuse, either of which generates far greater energy but passes it through a surface so large that the star radiates little per unit of surface area. A star near the middle of the spectrum, such as the modest Sun or the giant Capella radiates more energy per unit of surface area than the feeble red dwarf stars or the bloated supergiants, but much less than such a white or blue star as Vega or Rigel. To find the effective (blackbody) temperature of a planet, it can be calculated by equating the power received by the planet to the known power emitted by a blackbody of temperature T. Take the case of a planet at a distance D from the star, of luminosity L. Assuming the star radiates isotropically and that the planet is a long way from the star, the power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts some of the power which is spread over the surface of a sphere of radius D (the distance of the planet from the star). The calculation assumes the planet reflects some of the incoming radiation by incorporating a parameter called the albedo (a). An albedo of 1 means that all the radiation is reflected, an albedo of 0 means all of it is absorbed. The expression for absorbed power is then:

[ "Spectral line", "Stars", "Kepler Input Catalog", "Extreme helium star", "Model photosphere" ]
Parent Topic
Child Topic
    No Parent Topic