language-icon Old Web
English
Sign In

Sterile neutrino

Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that interact only via gravity and do not interact via any of the fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known active neutrinos in the Standard Model, which are charged under the weak interaction. Sterile neutrinos (or inert neutrinos) are hypothetical particles (neutral leptons – neutrinos) that interact only via gravity and do not interact via any of the fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known active neutrinos in the Standard Model, which are charged under the weak interaction. This term usually refers to neutrinos with right-handed chirality (see right-handed neutrino), which may be added to the Standard Model. Occasionally it is used in a general sense for any neutral fermion, instead of the more cautiously vague name neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs). The existence of right-handed neutrinos is theoretically well-motivated, as all other known fermions have been observed with both left and right chirality, and they can explain the observed active neutrino masses in a natural way. The mass of the right-handed neutrinos themselves is unknown and could have any value between 1015 GeV and less than 1 eV. The number of sterile neutrino types (should they exist) is not yet theoretically established. This is in contrast to the number of active neutrino types, which has to equal that of charged leptons and quark generations to ensure the anomaly freedom of the electroweak interaction. The search for sterile neutrinos is an active area of particle physics. If they exist and their mass is smaller than the energies of particles in the experiment, they can be produced in the laboratory, either by mixing between active and sterile neutrinos or in high energy particle collisions. If they are heavier, the only directly observable consequence of their existence would be the observed active neutrino masses. They may, however, be responsible for a number of unexplained phenomena in physical cosmology and astrophysics, including dark matter, baryogenesis or dark radiation. In May 2018, physicists of the MiniBooNE experiment reported a stronger neutrino oscillation signal than expected, a possible hint of sterile neutrinos. Experimental results show that all produced and observed neutrinos have left-handed helicities (spin antiparallel to momentum), and all antineutrinos have right-handed helicities, within the margin of error. In the massless limit, it means that only one of two possible chiralities is observed for either particle. These are the only helicities (and chiralities) included in the Standard Model of particle interactions. Recent experiments such as neutrino oscillation, however, have shown that neutrinos have a non-zero mass, which is not predicted by the Standard Model and suggests new, unknown physics. This unexpected mass explains neutrinos with right-handed helicity and antineutrinos with left-handed helicity: Since they do not move at the speed of light, their helicity is not relativistic invariant (it is possible to move faster than them and observe the opposite helicity). Yet all neutrinos have been observed with left-handed chirality, and all antineutrinos right-handed. Chirality is a fundamental property of particles and is relativistic invariant: It is the same regardless of the particle's speed and mass in every inertial reference frame. Although note that a particle with mass that starts out left-handed can develop a right-handed component as it travels – chirality is not conserved in the propagation of a free particle.

[ "Neutrino oscillation", "Lepton", "MiniBooNE", "Majorana equation", "Neutrino decoupling", "Pontecorvo–Maki–Nakagawa–Sakata matrix", "Neutrino theory of light" ]
Parent Topic
Child Topic
    No Parent Topic