Microphthalmia-associated transcription factor

Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein that in humans is encoded by the MITF gene. MITF is a basic helix-loop-helix leucine zipper transcription factor involved in lineage-specific pathway regulation of many types of cells including melanocytes, osteoclasts, and mast cells. The term 'lineage-specific', since it relates to MITF, means genes or traits that are only found in a certain cell type. Therefore, MITF may be involved in the rewiring of signaling cascades that are specifically required for the survival and physiological function of their normal cell precursors. MITF is the most characterized member of the MIT family. Its gene resides at the mi locus in mice, and its protumorogenic targets include factors involved in cell death, DNA replication, repair, mitosis, microRNA production, membrane trafficking, mitochondrial metabolism, and much more. Mutation of this gene results in deafness, bone loss, small eyes, and poorly pigmented eyes and skin. In human subjects, because it is known that MITF controls the expression of various genes that are essential for normal melanin synthesis in melanocytes, mutations of MITF can lead to diseases such as melanoma, Waardenburg syndrome, and Tietz syndrome. Its function is conserved across vertebrates, including in fishes such as zebrafish and Xiphophorus. An understanding of MITF is necessary to understand how certain lineage-specific cancers and other diseases progress. In addition, current and future research can lead to potential avenues to target this transcription factor mechanism for cancer prevention. As mentioned above, changes in MITF can result in serious health conditions. For example, mutations of MITF have been implicated in both Waardenburg syndrome and Tietz syndrome. Waardenburg syndrome is a rare genetic disorder. Its symptoms include deafness, minor defects, and abnormalities in pigmentation. Mutations in the MITF gene have been found in certain patients with Waardenburg syndrome, type II. Mutations that change the amino acid sequence of that result in an abnormally small MITF are found. These mutations disrupt dimer formation, and as a result cause insufficient development of melanocytes. The shortage of melanocytes causes some of the characteristic features of Waardenburg syndrome. Tietz syndrome, first described in 1923, is a congenital disorder often characterized by deafness and leucism. Tietz is caused by a mutation in the MITF gene. The mutation in MITF deletes or changes a single amino acid base pair specifically in the base motif region of the MITF protein. The new MITF protein is unable to bind to DNA and melanocyte development and subsequently melanin production is altered. A reduced number of melanocytes can lead to hearing loss, and decreased melanin production can account for the light skin and hair color that make Tietz syndrome so noticeable. Melanocytes are commonly known as cells that are responsible for producing the pigment melanin which gives coloration to the hair, skin, and nails. The exact mechanisms of how exactly melanocytes become cancerous are relatively unclear, but there is ongoing research to gain more information about the process. For example, it has been uncovered that the DNA of certain genes is often damaged in melanoma cells, most likely as a result of damage from UV radiation, and in turn increases the likelihood of developing melanoma. Specifically, it has been found that a large percentage of melanomas have mutations in the B-RAF gene which leads to melanoma by causing an MEK-ERK kinase cascade when activated. In addition to B-RAF, MITF is also known to play a crucial role in melanoma progression. Since it is a transcription factor that is involved in the regulation of genes related to invasiveness, migration, and metastasis, it can play a role in the progression of melanoma. Figure 1 shows the specific activators and targets of MITF that are related to the survival, migration, proliferation, invasion and metastasis of melanoma cells.

[ "Transcription factor", "Melanoma", "Tyrosinase", "Tyrosinase-related protein-2", "MITF Protein", "MITF Transcription Factor", "E-box binding", "Waardenburg syndrome type 2A" ]
Parent Topic
Child Topic
    No Parent Topic