language-icon Old Web
English
Sign In

Light-independent reactions

The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis are the chemical reactions that convert carbon dioxide and other compounds into glucose. These reactions occur in the stroma, the fluid-filled area of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them. There are three phases to the light-independent reactions, collectively called the Calvin cycle: carbon fixation, reduction reactions, and ribulose 1,5-bisphosphate (RuBP) regeneration. The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis are the chemical reactions that convert carbon dioxide and other compounds into glucose. These reactions occur in the stroma, the fluid-filled area of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them. There are three phases to the light-independent reactions, collectively called the Calvin cycle: carbon fixation, reduction reactions, and ribulose 1,5-bisphosphate (RuBP) regeneration. This process occurs only when light is available. Plants do not carry out the Calvin cycle during nighttime. They instead release sucrose into the phloem from their starch reserves to provide energy for the plant. This process happens when light is available independent of the kind of photosynthesis (C3 carbon fixation, C4 carbon fixation, and Crassulacean Acid Metabolism (CAM)); CAM plants store malic acid in their vacuoles every night and release it by day to make this process work. These reactions are closely coupled to the thylakoid electron transport chain as the energy required to reduce the carbon dioxide is provided by NADPH produced in photosystem I during the light dependent reactions. The process of photorespiration, also known as C2 cycle, is also coupled to the calvin cycle, as it results from an alternative reaction of the RuBisCO enzyme, and its final byproduct is another glyceraldehyde-3-P. The Calvin cycle, Calvin–Benson–Bassham (CBB) cycle, reductive pentose phosphate cycle or C3 cycle is a series of biochemical redox reactions that take place in the stroma of chloroplast in photosynthetic organisms. The cycle was discovered by Melvin Calvin, James Bassham, and Andrew Benson at the University of California, Berkeley by using the radioactive isotope carbon-14. Photosynthesis occurs in two stages in a cell. In the first stage, light-dependent reactions capture the energy of light and use it to make the energy-storage and transport molecules ATP and NADPH. The Calvin cycle uses the energy from short-lived electronically excited carriers to convert carbon dioxide and water into organic compounds that can be used by the organism (and by animals that feed on it). This set of reactions is also called carbon fixation. The key enzyme of the cycle is called RuBisCO. In the following biochemical equations, the chemical species (phosphates and carboxylic acids) exist in equilibria among their various ionized states as governed by the pH. The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but they are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the name 'dark reaction' is misleading), and also by products of the light-dependent reaction. These regulatory functions prevent the Calvin cycle from being respired to carbon dioxide. Energy (in the form of ATP) would be wasted in carrying out these reactions that have no net productivity.

[ "RuBisCO", "Chloroplast", "Pyruvate carboxylase", "Oxygenase", "Carbon fixation", "2-carboxyarabinitol 1-phosphate" ]
Parent Topic
Child Topic
    No Parent Topic