language-icon Old Web
English
Sign In

Superposition calculus

The superposition calculus is a calculus for reasoning in equational first-order logic. It was developed in the early 1990s and combines concepts from first-order resolution with ordering-based equality handling as developed in the context of (unfailing) Knuth–Bendix completion. It can be seen as a generalization of either resolution (to equational logic) or unfailing completion (to full clausal logic). As most first-order calculi, superposition tries to show the unsatisfiability of a set of first-order clauses, i.e. it performs proofs by refutation. Superposition is refutation-complete—given unlimited resources and a fair derivation strategy, from any unsatisfiable clause set a contradiction will eventually be derived. The superposition calculus is a calculus for reasoning in equational first-order logic. It was developed in the early 1990s and combines concepts from first-order resolution with ordering-based equality handling as developed in the context of (unfailing) Knuth–Bendix completion. It can be seen as a generalization of either resolution (to equational logic) or unfailing completion (to full clausal logic). As most first-order calculi, superposition tries to show the unsatisfiability of a set of first-order clauses, i.e. it performs proofs by refutation. Superposition is refutation-complete—given unlimited resources and a fair derivation strategy, from any unsatisfiable clause set a contradiction will eventually be derived. As of 2007, most of the (state-of-the-art) theorem provers for first-order logic are based on superposition (e.g. the E equational theorem prover), although only a few implement the pure calculus.

[ "Rule of inference", "Superposition principle", "Completeness (statistics)", "Automated theorem proving" ]
Parent Topic
Child Topic
    No Parent Topic