language-icon Old Web
Sign In

Asymptotic giant branch

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (0.6–10 solar masses) late in their lives. The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (0.6–10 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars. When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer layers of the star to expand and cool. The star becomes a red giant, following a track towards the upper-right hand corner of the HR diagram. Eventually, once the temperature in the core has reached approximately 3×108 K, helium burning (fusion of helium nuclei) begins. The onset of helium burning in the core halts the star's cooling and increase in luminosity, and the star instead moves down and leftwards in the HR diagram. This is the horizontal branch (for population II stars) or red clump (for population I stars), or a blue loop for stars more massive than about 2 M☉. After the completion of helium burning in the core, the star again moves to the right and upwards on the diagram, cooling and expanding as its luminosity increases. Its path is almost aligned with its previous red-giant track, hence the name asymptotic giant branch, although the star will become more luminous on the AGB than it did at the tip of the red giant branch. Stars at this stage of stellar evolution are known as AGB stars. The AGB phase is divided into two parts, the early AGB (E-AGB) and the thermally pulsing AGB (TP-AGB). During the E-AGB phase, the main source of energy is helium fusion in a shell around a core consisting mostly of carbon and oxygen. During this phase, the star swells up to giant proportions to become a red giant again. The star's radius may become as large as one astronomical unit (~215 R☉). After the helium shell runs out of fuel, the TP-AGB starts. Now the star derives its energy from fusion of hydrogen in a thin shell, which restricts the inner helium shell to a very thin layer and prevents it fusing stably. However, over periods of 10,000 to 100,000 years, helium from the hydrogen shell burning builds up and eventually the helium shell ignites explosively, a process known as a helium shell flash. The luminosity of the shell flash peaks at thousands of times the total luminosity of the star, but decreases exponentially over just a few years. The shell flash causes the star to expand and cool which shuts off the hydrogen shell burning and causes strong convection in the zone between the two shells. When the helium shell burning nears the base of the hydrogen shell, the increased temperature reignites hydrogen fusion and the cycle begins again. The large but brief increase in luminosity from the helium shell flash produces an increase in the visible brightness of the star of a few tenths of a magnitude for several hundred years, a change unrelated to the brightness variations on periods of tens to hundreds of days that are common in this type of star. During the thermal pulses, which last only a few hundred years, material from the core region may be mixed into the outer layers, changing the surface composition, a process referred to as dredge-up. Because of this dredge-up, AGB stars may show S-process elements in their spectra and strong dredge-ups can lead to the formation of carbon stars. All dredge-ups following thermal pulses are referred to as third dredge-ups, after the first dredge-up, which occurs on the red-giant branch, and the second dredge up, which occurs during the E-AGB. In some cases there may not be a second dredge-up but dredge-ups following thermal pulses will still be called a third dredge-up. Thermal pulses increase rapidly in strength after the first few, so third dredge-ups are generally the deepest and most likely to circulate core material to the surface. AGB stars are typically long-period variables, and suffer mass loss in the form of a stellar wind. Thermal pulses produce periods of even higher mass loss and may result in detached shells of circumstellar material. A star may lose 50 to 70% of its mass during the AGB phase. The extensive mass loss of AGB stars means that they are surrounded by an extended circumstellar envelope (CSE). Given a mean AGB lifetime of one Myr and an outer velocity of 10 km/s, its maximum radius can be estimated to be roughly 3×1014 km (30 light years). This is a maximum value since the wind material will start to mix with the interstellar medium at very large radii, and it also assumes that there is no velocity difference between the star and the interstellar gas. Dynamically, most of the interesting action is quite close to the star, where the wind is launched and the mass loss rate is determined. However, the outer layers of the CSE show chemically interesting processes, and due to size and lower optical depth, are easier to observe.

[ "Stellar evolution", "Stars", "Barium star", "Blue giant", "CH star", "Turnoff point", "C-Star" ]
Parent Topic
Child Topic
    No Parent Topic