language-icon Old Web
English
Sign In

Exome sequencing

Exome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding region of genes in a genome (known as the exome). It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons – humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.Exome sequencing is especially effective in the study of rare Mendelian diseases, because it is an efficient way to identify the genetic variants in all of an individual's genes. These diseases are most often caused by very rare genetic variants that are only present in a tiny number of individuals; by contrast, techniques such as SNP arrays can only detect shared genetic variants that are common to many individuals in the wider population. Furthermore, because severe disease-causing variants are much more likely (but by no means exclusively) to be in the protein coding sequence, focusing on this 1% costs far less than whole genome sequencing but still detects a high yield of relevant variants.Target-enrichment methods allow one to selectively capture genomic regions of interest from a DNA sample prior to sequencing. Several target-enrichment strategies have been developed since the original description of the direct genomic selection (DGS) method in 2005.There are multiple technologies available that identify genetic variants. Each technology has advantages and disadvantages in terms of technical and financial factors. Two such technologies are microarrays and whole-genome sequencing.The statistical analysis of the large quantity of data generated from sequencing approaches is a challenge. Even by only sequencing the exomes of individuals, a large quantity of data and sequence information is generated which requires a significant amount of data analysis. Challenges associated with the analysis of this data include changes in programs used to align and assemble sequence reads. Various sequencing technologies also have different error rates and generate various read-lengths which can pose challenges in comparing results from different sequencing platforms.New technologies in genomics have changed the way researchers approach both basic and translational research. With approaches such as exome sequencing, it is possible to significantly enhance the data generated from individual genomes which has put forth a series of questions on how to deal with the vast amount of information. Should the individuals in these studies be allowed to have access to their sequencing information? Should this information be shared with insurance companies? This data can lead to unexpected findings and complicate clinical utility and patient benefit. This area of genomics still remains a challenge and researchers are looking into how to address these questions.By using exome sequencing, fixed-cost studies can sequence samples to much higher depth than could be achieved with whole genome sequencing. This additional depth makes exome sequencing well suited to several applications that need reliable variant calls.

[ "Phenotype", "Mutation", "Disease", "BAINBRIDGE-ROPERS SYNDROME", "GLYCOGEN STORAGE DISEASE IV", "Acephalic spermatozoa", "Biotin-thiamine-responsive basal ganglia disease", "exome capture" ]
Parent Topic
Child Topic
    No Parent Topic