language-icon Old Web
English
Sign In

Ventromedial prefrontal cortex

The ventromedial prefrontal cortex (vmPFC) is a part of the prefrontal cortex in the mammalian brain. The ventral medial prefrontal is located in the frontal lobe at the bottom of the cerebral hemispheres and is implicated in the processing of risk and fear, as it is critical in the regulation of amygdala activity in humans. It also plays a role in the inhibition of emotional responses, and in the process of decision making and self control. It is also involved in the cognitive evaluation of morality. The ventromedial prefrontal cortex (vmPFC) is a part of the prefrontal cortex in the mammalian brain. The ventral medial prefrontal is located in the frontal lobe at the bottom of the cerebral hemispheres and is implicated in the processing of risk and fear, as it is critical in the regulation of amygdala activity in humans. It also plays a role in the inhibition of emotional responses, and in the process of decision making and self control. It is also involved in the cognitive evaluation of morality. While the ventromedial prefrontal cortex does not have a universally agreed on demarcation, in most sources, it is equivalent to the ventromedial reward network of Ongur and Price. This network includes Brodmann area 10, Brodmann area 14, Brodmann area 25, and Brodmann area 32, as well as portions of Brodmann area 11, Brodmann area 12, and Brodmann area 13. However, not all sources agree on the boundaries of the area. Different researchers use the term ventromedial prefrontal cortex differently. Sometimes, the term is saved for the area above the medial orbitofrontal cortex, while at other times, 'ventromedial prefrontal cortex' is used to describe a broad area in the lower (ventral) central (medial) region of the prefrontal cortex, of which the medial orbitofrontal cortex constitutes the lowermost part. This latter, broader area, corresponds to the area damaged in patients with decision-making impairments investigated by António Damásio and colleagues (see diagram, and below). The ventromedial prefrontal cortex is connected to and receives input from the ventral tegmental area, amygdala, the temporal lobe, the olfactory system, and the dorsomedial thalamus. It, in turn, sends signals to many different brain regions including; The temporal lobe, amygdala, the lateral hypothalamus, the hippocampal formation, the cingulate cortex, and certain other regions of the prefrontal cortex. This huge network of connections affords the vmPFC the ability to receive and monitor large amounts of sensory data and to affect and influence a plethora of other brain regions, particularly the amygdala. Functional differences between the orbitofrontal and ventromedial areas of the pre-frontal cortex have not yet been clearly established, although the areas of the ventromedial cortex superior to the orbitofrontal cortex are much less associated with social functions and more with pure emotion regulation. Research in developmental neuroscience also suggested that neural networks in the ventromedial prefrontal cortex are rapidly developing during adolescence and young adulthood supporting emotion regulation through the amygdala, being associated with a decrease in cortisol levels.There are only a few reports of people with early-onset vmPFC damage during childhood, but these individuals tend to have severe antisocial behavior and impaired moral judgment. Compared to individuals with damage later in life, their behavior pattern is similar but more severe. It is also considered central to the physiology of anxiety and mood disorders. However, the precise mechanisms by which vmPFC contributes to affective processing are not fully understood. Patients with bilateral lesions of the vmPFC develop severe impairments in personal and social decision-making even though most of their intellectual ability is preserved. For instance, they have difficulties in choosing between options with uncertain outcomes, whether the uncertainty is in the form of a risk or of an ambiguity. After their lesion, these patients have an impaired capacity to learn from their mistakes, making the same decisions again and again even though they lead to negative consequences. These patients choose alternatives that give immediate rewards, but seem to be blind to the future consequences of their actions. However, the underlying mechanisms of this behavior are not yet fully understood. Damage to the ventromedial prefrontal cortex (especially in the right hemisphere) has been connected with deficits in detecting irony, sarcasm, and deception. Subjects with damage in this area have been found to be more easily influenced by misleading advertising. This has been attributed to a disruption of a 'false tagging mechanism' which provides doubt and skepticism of new beliefs. People with damage to the ventromedial prefrontal cortex still retain the ability to consciously make moral judgments without error, but only in hypothetical situations presented to them. They are severely impaired in making personal and social decisions. There is a gap in reasoning when applying the same moral principles to similar situations in their own lives. The result is that people make decisions that are inconsistent with their self professed moral values. People with early damage to the ventromedial prefrontal cortex are more likely to endorse self-serving actions that break moral rules or cause harm to others. This is especially true for patients whose damage occurred the earliest in life. Emotions and an understanding of social norms are used to provide reasoning of the moral nature on our behaviors, beliefs, and the people around us. The vmPFC works as the neural basis in allowing emotion to influence moral judgement. In functional imaging studies, increased activity in the vmPFC is associated with thinking of these personal moral situations, while making harmless decisions does not. Patients with vmPFC lesions made the same decision in impersonal and personal dilemmas. Dysfunction of the vmPFC causes failure in using correct moral emotion, which explains why these patients showed less emotional responses when facing these dilemmas. The vmPFC plays an important role in regulating and inhibiting our response to emotions. VmPFC seems to use our emotional reactions to model our behavior and control emotional reactions in certain social situations. The inputs of the vmPFC provide it with information from the environment and the plans of the frontal lobe, and its outputs allow the vmPFC to control different physiological responses and behaviors. The role of the vmPFC is especially highlighted in people with damage to this region. A damaged vmPFC causes impairments of behavioral control and decision making, consequences which are rooted in emotional dysregulation.

[ "Amygdala", "Functional magnetic resonance imaging", "Prefrontal cortex" ]
Parent Topic
Child Topic
    No Parent Topic