language-icon Old Web
English
Sign In

Fractal

In mathematics, a fractal is a subset of a Euclidean space for which the Hausdorff dimension strictly exceeds the topological dimension. Fractals tend to appear nearly the same at different levels, as is illustrated here in the successively small magnifications of the Mandelbrot set; because of this, fractals are encountered ubiquitously in nature. Fractals exhibit similar patterns at increasingly small scales called self similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, it is called affine self-similar. Fractal geometry lies within the mathematical branch of topology. One way that fractals are different from finite geometric figures is the way in which they scale. Doubling the edge lengths of a polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the dimension of the space the polygon resides in). Likewise, if the radius of a sphere is doubled, its volume scales by eight, which is two (the ratio of the new to the old radius) to the power of three (the dimension that the sphere resides in). However, if a fractal's one-dimensional lengths are all doubled, the spatial content of the fractal scales by a power that is not necessarily an integer. This power is called the fractal dimension of the fractal, and it usually exceeds the fractal's topological dimension. Analytically, fractals are usually nowhere differentiable. An infinite fractal curve can be conceived of as winding through space differently from an ordinary line – although it is still 1-dimensional, its fractal dimension indicates that it also resembles a surface. Starting in the 17th century with notions of recursion, fractals have moved through increasingly rigorous mathematical treatment of the concept to the study of continuous but not differentiable functions in the 19th century by the seminal work of Bernard Bolzano, Bernhard Riemann, and Karl Weierstrass, and on to the coining of the word fractal in the 20th century with a subsequent burgeoning of interest in fractals and computer-based modelling in the 20th century. The term 'fractal' was first used by mathematician Benoit Mandelbrot in 1975. Mandelbrot based it on the Latin frāctus, meaning 'broken' or 'fractured', and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature. There is some disagreement among mathematicians about how the concept of a fractal should be formally defined. Mandelbrot himself summarized it as 'beautiful, damn hard, increasingly useful. That's fractals.' More formally, in 1982 Mandelbrot stated that 'A fractal is by definition a set for which the Hausdorff–Besicovitch dimension strictly exceeds the topological dimension.' Later, seeing this as too restrictive, he simplified and expanded the definition to: 'A fractal is a shape made of parts similar to the whole in some way.' Still later, Mandelbrot settled on this use of the language: '...to use fractal without a pedantic definition, to use fractal dimension as a generic term applicable to all the variants'. The consensus is that theoretical fractals are infinitely self-similar, iterated, and detailed mathematical constructs having fractal dimensions, of which many examples have been formulated and studied in great depth. Fractals are not limited to geometric patterns, but can also describe processes in time. Fractal patterns with various degrees of self-similarity have been rendered or studied in images, structures and sounds and found in nature, technology, art, architecture and law. Fractals are of particular relevance in the field of chaos theory, since the graphs of most chaotic processes are fractals. The word 'fractal' often has different connotations for the lay public as opposed to mathematicians, where the public are more likely to be familiar with fractal art than the mathematical concept. The mathematical concept is difficult to define formally, even for mathematicians, but key features can be understood with little mathematical background. The feature of 'self-similarity', for instance, is easily understood by analogy to zooming in with a lens or other device that zooms in on digital images to uncover finer, previously invisible, new structure. If this is done on fractals, however, no new detail appears; nothing changes and the same pattern repeats over and over, or for some fractals, nearly the same pattern reappears over and over. Self-similarity itself is not necessarily counter-intuitive (e.g., people have pondered self-similarity informally such as in the infinite regress in parallel mirrors or the homunculus, the little man inside the head of the little man inside the head ...). The difference for fractals is that the pattern reproduced must be detailed.:166; 18

[ "Topology", "Mathematical analysis", "Fractal dimension", "iteration function", "fractal operator", "Chaos game", "fractal pattern" ]
Parent Topic
Child Topic
    No Parent Topic