language-icon Old Web
English
Sign In

Homeobox

A homeobox is a DNA sequence, around 180 base pairs long, found within genes that are involved in the regulation of patterns of anatomical development (morphogenesis) in animals, fungi, plants, and numerous single cell eukaryotes. These genes encode homeodomain protein products that are transcription factors sharing a characteristic protein fold structure that binds DNA. A homeobox is a DNA sequence, around 180 base pairs long, found within genes that are involved in the regulation of patterns of anatomical development (morphogenesis) in animals, fungi, plants, and numerous single cell eukaryotes. These genes encode homeodomain protein products that are transcription factors sharing a characteristic protein fold structure that binds DNA. Homeosis is a term coined by William Bateson to describe the outright replacement of a discrete body part with another body part, e.g. antennapedia—replacement of the antenna on the head of a fruit fly with legs. The 'homeo-' prefix in the words 'homeobox' and 'homeodomain' stems from this mutational phenotype, which is frequently observed when these genes are mutated in animals. Homeoboxes were discovered independently in 1983 by Ernst Hafen, Michael Levine, and William McGinnis working in the lab of Walter Jakob Gehring at the University of Basel, Switzerland; and by Matthew P. Scott and Amy Weiner, who were then working with Thomas Kaufman at Indiana University in Bloomington. The existence of homeobox genes were first discovered in Drosophila, where mutations in homeobox genes caused the radical alterations known as 'homeotic transformations'. One of the most famous such mutation is antennapedia, in which legs grow from the head of a fly instead of the expected antennae. A homeobox is about 180 DNA base pairs long and encodes a protein domain that binds DNA. The following shows the consensus homeodomain (~60 amino acid residue chain): The characteristic homeodomain protein fold consists of a 60-amino acid long domain composed of three alpha helixes. Helix 2 and helix 3 form a so-called helix-turn-helix (HTH) structure, where the two alpha helices are connected by a short loop region. The N-terminal two helices of the homeodomain are antiparallel and the longer C-terminal helix is roughly perpendicular to the axes established by the first two. It is this third helix that interacts directly with DNA via a number of hydrogen bonds and hydrophobic interactions, as well as indirect interactions via water molecules, which occur between specific side chains and the exposed bases within the major groove of the DNA. Homeodomain proteins are found in eukaryotes. Through the HTH motif, they share limited sequence similarity and structural similarity to prokaryotic transcription factors, such as lambda phage proteins that alter the expression of genes in prokaryotes. The HTH motif shows some sequence similarity but a similar structure in a wide range of DNA-binding proteins (e.g., cro and repressor proteins, homeodomain proteins, etc.). One of the principal differences between HTH motifs in these different proteins arises from the stereo-chemical requirement for glycine in the turn which is needed to avoid steric interference of the beta-carbon with the main chain: for cro and repressor proteins the glycine appears to be mandatory, whereas for many of the homeotic and other DNA-binding proteins the requirement is relaxed. Homeodomains can bind both specifically and nonspecifically to B-DNA with the C-terminal recognition helix aligning in the DNA's major groove and the unstructured peptide 'tail' at the N-terminus aligning in the minor groove. The recognition helix and the inter-helix loops are rich in arginine and lysine residues, which form hydrogen bonds to the DNA backbone; conserved hydrophobic residues in the center of the recognition helix aid in stabilizing the helix packing. Homeodomain proteins show a preference for the DNA sequence 5'-TAAT-3'; sequence-independent binding occurs with significantly lower affinity. Through the DNA-recognition properties of the homeodomain, homeoproteins are believed to regulate the expression of targeted genes and direct the formation of many body structures during early embryonic development. Many homeodomain proteins induce cellular differentiation by initiating the cascades of coregulated genes required to produce individual tissues and organs. Other proteins in the family, such as NANOG are involved in maintaining pluripotency. Homeobox genes are critical in the establishment of body axes during embryogenesis. Homeoprotein transcription factors typically switch on cascades of other genes. The homeodomain binds DNA in a sequence-specific manner. However, the specificity of a single homeodomain protein is usually not enough to recognize only its desired target genes. Most of the time, homeodomain proteins act in the promoter region of their target genes as complexes with other transcription factors. Such complexes have a much higher target specificity than a single homeodomain protein. Homeodomains are encoded both by genes of the Hox gene clusters and by other genes throughout the genome.

[ "Transcription factor", "Gene expression", "Zinc Finger E-box Binding Homeobox 2", "PITX3 gene", "Growth arrest-specific homeobox", "NUP98 Gene", "HOXA1 Gene" ]
Parent Topic
Child Topic
    No Parent Topic