language-icon Old Web
English
Sign In

Phytochemical

Phytochemicals are chemical compounds produced by plants, generally to help them thrive or thwart competitors, predators, or pathogens. The name comes from Greek φυτόν (phyton), meaning 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine. Phytochemicals are chemical compounds produced by plants, generally to help them thrive or thwart competitors, predators, or pathogens. The name comes from Greek φυτόν (phyton), meaning 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine. As a term, phytochemicals is generally used to describe plant compounds that are under research with unestablished effects on health and are not scientifically defined as essential nutrients. Regulatory agencies governing food labeling in Europe and the United States have provided guidance for industry limiting or preventing health claims about phytochemicals on food product or nutrition labels. Phytochemicals are chemicals of plant origin. Phytochemicals (from Greek phyto, meaning 'plant') are chemicals produced by plants through primary or secondary metabolism. They generally have biological activity in the plant host and play a role in plant growth or defense against competitors, pathogens, or predators. Phytochemicals generally are regarded as research compounds rather than essential nutrients because proof of their possible health effects has not been established yet. Phytochemicals under research can be classified into major categories, such as carotenoids and polyphenols, which include phenolic acids, flavonoids, and stilbenes/lignans. Flavonoids can be further divided into groups based on their similar chemical structure, such as anthocyanins, flavones, flavanones, and isoflavones, and flavanols. Flavanols further are classified as catechins, epicatechins, and proanthocyanidins. Phytochemists study phytochemicals by first extracting and isolating compounds from the origin plant, followed by defining their structure or testing in laboratory model systems, such as cell cultures, in vitro experiments, or in vivo studies using laboratory animals. Challenges in that field include isolating specific compounds and determining their structures, which are often complex, and identifying what specific phytochemical is primarily responsible for any given biological activity. Without specific knowledge of their cellular actions or mechanisms, phytochemicals have been used as poison and in traditional medicine. For example, salicin, having anti-inflammatory and pain-relieving properties, was originally extracted from the bark of the white willow tree and later synthetically produced to become the common, over-the-counter drug, aspirin. The tropane alkaloids of A. belladonna were used as poisons, and early humans made poisonous arrows from the plant. In Ancient Rome, it was used as a poison by Agrippina the Younger, wife of Emperor Claudius on advice of Locusta, a lady specialized in poisons, and Livia, who is rumored to have used it to kill her husband Emperor Augustus. The English yew tree was long known to be extremely and immediately toxic to animals that grazed on its leaves or children who ate its berries; however, in 1971, paclitaxel was isolated from it, subsequently becoming an important cancer drug. As of 2017, the biological activities for most phytochemicals are unknown or poorly understood, in isolation or as part of foods. Phytochemicals with established roles in the body are classified as essential nutrients. The phytochemical category includes compounds recognized as essential nutrients, which are naturally contained in plants and are required for normal physiological functions, so must be obtained from the diet in humans.

[ "Biochemistry", "Botany", "Traditional medicine", "Globimetula", "Azima tetracantha", "Senna hirsuta", "Terminalia schimperiana", "Lasianthera africana" ]
Parent Topic
Child Topic
    No Parent Topic