language-icon Old Web
English
Sign In

Very low frequency

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters (an obsolete metric unit equal to 10 kilometers). Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations (broadcasting time signals to set radio clocks) and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.ELF 3 Hz/100 Mm 30 Hz/10 MmSLF 30 Hz/10 Mm 300 Hz/1 MmULF 300 Hz/1 Mm 3 kHz/100 kmVLF 3 kHz/100 km 30 kHz/10 kmLF 30 kHz/10 km 300 kHz/1 kmMF 300 kHz/1 km 3 MHz/100 mHF 3 MHz/100 m 30 MHz/10 mVHF 30 MHz/10 m 300 MHz/1 mUHF 300 MHz/1 m 3 GHz/100 mmSHF 3 GHz/100 mm 30 GHz/10 mmEHF 30 GHz/10 mm 300 GHz/1 mmTHF 300 GHz/1 mm 3 THz/0.1 mm Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters (an obsolete metric unit equal to 10 kilometers). Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations (broadcasting time signals to set radio clocks) and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines. Because of their large wavelengths, VLF radio waves can diffract around large obstacles and so are not blocked by mountain ranges or the horizon, and can propagate as ground waves following the curvature of the Earth. The main mode of long distance propagation is an Earth-ionosphere waveguide mechanism. The Earth is surrounded by a conductive layer of electrons and ions in the upper atmosphere at the bottom of the ionosphere called the D layer at 60 to 90 km (37 to 56 miles) altitude, which reflects VLF radio waves. The conductive ionosphere and the conductive Earth form a horizontal 'duct' a few VLF wavelengths high, which acts as a waveguide confining the waves so they don't escape into space. The waves travel in a zigzag path around the Earth, reflected alternately by the Earth and the ionosphere, in TM (transverse magnetic) mode. VLF waves have very low path attenuation, 2-3 dB per 1000 km, with little of the 'fading' experienced at higher frequencies, This is because VLF waves are reflected from the bottom of the ionosphere, while higher frequency shortwave signals are returned to Earth from higher layers in the ionosphere, the F1 and F2 layers, by a refraction process, and spend most of their journey in the ionosphere, so they are much more affected by ionization gradients and turbulence. Therefore, VLF transmissions are very stable and reliable, and are used for long distance communication. Propagation distances of 5000 to 20000 km have been realized. However, atmospheric noise (sferics) is high in the band, including such phenomena as 'whistlers', caused by lightning. VLF waves can penetrate seawater to a depth of at least 10 to 40 meters (30 to 130 feet), depending on the frequency employed and the salinity of the water, so they are used to communicate with submarines. VLF waves at certain frequencies have been found to cause electron precipitation. VLF waves used to communicate with submarines have created an artificial bubble around the Earth that can protect it from solar flares and coronal mass ejections; this occurred through interaction with high-energy radiation particles. A major practical drawback to this band is that because of the length of the waves, full size resonant antennas (half wave dipole or quarter wave monopole antennas) cannot be built because of their physical height. Vertical antennas must be used because VLF waves propagate in vertical polarization, but a quarter-wave vertical antenna at 30 kHz would be 2.5 kilometres (8,200 feet) high. So practical transmitting antennas are electrically short, a small fraction of a wavelength long. Due to their low radiation resistance (often less than one ohm) they are inefficient, radiating only 10% to 50% of the transmitter power at most, with the rest of the power dissipated in the antenna/ground system resistances. Very high power transmitters (~1 megawatt) are required for long distance communication, so the efficiency of the antenna is an important factor. High power transmitting antennas for VLF frequencies are very large wire antennas, up to a mile across. They consist of a series of steel radio masts, linked at the top with a network of cables, often shaped like an umbrella or clotheslines. Either the towers themselves or vertical wires serve as monopole radiators, and the horizontal cables form a capacitive top-load to increase the efficiency of the antenna. High power stations use variations on the umbrella antenna such as the 'delta' and 'trideco' antennas, or multiwire flattop (triatic) antennas. For low power transmitters, inverted-L and T antennas are used. A large loading coil is required at the antenna feed point to cancel the capacitive reactance of the antenna to make it resonant. Due to the low radiation resistance, to minimize power dissipated in the ground these antennas require extremely low resistance ground (Earthing) systems. Because of soil resistance and dielectric losses in the ground, the buried cable ground systems used by higher frequency transmitters tend to have unacceptably high losses, and counterpoise systems are usually used, consisting of radial networks of copper cables supported several feet above the ground under the antenna, extending out radially from the mast or vertical element.

[ "Electronic engineering", "Acoustics", "Telecommunications", "Ionosphere", "Astronomy", "Fraser Filter" ]
Parent Topic
Child Topic
    No Parent Topic