language-icon Old Web
English
Sign In

Stratigraphy

Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks.Stratigraphy has two related subfields: lithostratigraphy (lithologic stratigraphy) and biostratigraphy (biologic stratigraphy). Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks.Stratigraphy has two related subfields: lithostratigraphy (lithologic stratigraphy) and biostratigraphy (biologic stratigraphy). Catholic priest Nicholas Steno established the theoretical basis for stratigraphy when he introduced the law of superposition, the principle of original horizontality and the principle of lateral continuity in a 1669 work on the fossilization of organic remains in layers of sediment. The first practical large-scale application of stratigraphy was by William Smith in the 1790s and early 19th century. Known as the 'Father of English geology', Smith recognized the significance of strata or rock layering and the importance of fossil markers for correlating strata; he created the first geologic map of England. Other influential applications of stratigraphy in the early 19th century were by Georges Cuvier and Alexandre Brongniart, who studied the geology of the region around Paris. Variation in rock units, most obviously displayed as visible layering, is due to physical contrasts in rock type (lithology). This variation can occur vertically as layering (bedding), or laterally, and reflects changes in environments of deposition (known as facies change). These variations provide a lithostratigraphy or lithologic stratigraphy of the rock unit. Key concepts in stratigraphy involve understanding how certain geometric relationships between rock layers arise and what these geometries imply about their original depositional environment. The basic concept in stratigraphy, called the law of superposition, states: in an undeformed stratigraphic sequence, the oldest strata occur at the base of the sequence. Chemostratigraphy studies the changes in the relative proportions of trace elements and isotopes within and between lithologic units. Carbon and oxygen isotope ratios vary with time, and researchers can use those to map subtle changes that occurred in the paleoenvironment. This has led to the specialized field of isotopic stratigraphy. Cyclostratigraphy documents the often cyclic changes in the relative proportions of minerals (particularly carbonates), grain size, thickness of sediment layers (varves) and fossil diversity with time, related to seasonal or longer term changes in palaeoclimates. Biostratigraphy or paleontologic stratigraphy is based on fossil evidence in the rock layers. Strata from widespread locations containing the same fossil fauna and flora are said to be correlatable in time. Biologic stratigraphy was based on William Smith's principle of faunal succession, which predated, and was one of the first and most powerful lines of evidence for, biological evolution. It provides strong evidence for the formation (speciation) and extinction of species. The geologic time scale was developed during the 19th century, based on the evidence of biologic stratigraphy and faunal succession. This timescale remained a relative scale until the development of radiometric dating, which gave it and the stratigraphy it was based on an absolute time framework, leading to the development of chronostratigraphy. One important development is the Vail curve, which attempts to define a global historical sea-level curve according to inferences from worldwide stratigraphic patterns. Stratigraphy is also commonly used to delineate the nature and extent of hydrocarbon-bearing reservoir rocks, seals, and traps of petroleum geology. Chronostratigraphy is the branch of stratigraphy that places an absolute age, rather than a relative age on rock strata. The branch is concerned with deriving geochronological data for rock units, both directly and inferentially, so that a sequence of time-relative events that created the rocks formation can be derived. The ultimate aim of chronostratigraphy is to place dates on the sequence of deposition of all rocks within a geological region, and then to every region, and by extension to provide an entire geologic record of the Earth.

[ "Tectonics", "Geomorphology", "Paleontology", "Selma Group", "Stratigraphic column", "Engineering geology", "Stratotype", "Mulde event" ]
Parent Topic
Child Topic
    No Parent Topic