language-icon Old Web
English
Sign In

Photon entanglement

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated, interact, or share spatial proximity in ways such that the quantum state of each particle cannot be described independently of the state of the others, even when the particles are separated by a large distance. Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated, interact, or share spatial proximity in ways such that the quantum state of each particle cannot be described independently of the state of the others, even when the particles are separated by a large distance. Measurements of physical properties such as position, momentum, spin, and polarization, performed on entangled particles are found to be correlated. For example, if a pair of particles is generated in such a way that their total spin is known to be zero, and one particle is found to have clockwise spin on a certain axis, the spin of the other particle, measured on the same axis, will be found to be counterclockwise, as is to be expected due to their entanglement. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a property of a particle performs an irreversible collapse on that particle and will change the original quantum state. In the case of entangled particles, such a measurement will be on the entangled system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, and several papers by Erwin Schrödinger shortly thereafter, describing what came to be known as the EPR paradox. Einstein and others considered such behavior to be impossible, as it violated the local realism view of causality (Einstein referring to it as 'spooky action at a distance') and argued that the accepted formulation of quantum mechanics must therefore be incomplete. Later, however, the counterintuitive predictions of quantum mechanics were verified experimentally in tests where the polarization or spin of entangled particles were measured at separate locations, statistically violating Bell's inequality. In earlier tests it couldn't be absolutely ruled out that the test result at one point could have been subtly transmitted to the remote point, affecting the outcome at the second location. However so-called 'loophole-free' Bell tests have been performed in which the locations were separated such that communications at the speed of light would have taken longer—in one case 10,000 times longer—than the interval between the measurements. According to some interpretations of quantum mechanics, the effect of one measurement occurs instantly. Other interpretations which don't recognize wavefunction collapse dispute that there is any 'effect' at all. However, all interpretations agree that entanglement produces correlation between the measurements and that the mutual information between the entangled particles can be exploited, but that any transmission of information at faster-than-light speeds is impossible. Quantum entanglement has been demonstrated experimentally with photons, neutrinos, electrons, molecules as large as buckyballs, and even small diamonds. On 13 July 2019, scientists from the University of Glasgow reported taking the first ever photo of a strong form of quantum entanglement known as Bell entanglement. The utilization of entanglement in communication and computation is a very active area of research. The counterintuitive predictions of quantum mechanics about strongly correlated systems were first discussed by Albert Einstein in 1935, in a joint paper with Boris Podolsky and Nathan Rosen. In this study, the three formulated the Einstein–Podolsky–Rosen paradox (EPR paradox), a thought experiment that attempted to show that quantum mechanical theory was incomplete. They wrote: 'We are thus forced to conclude that the quantum-mechanical description of physical reality given by wave functions is not complete.' However, the three scientists did not coin the word entanglement, nor did they generalize the special properties of the state they considered. Following the EPR paper, Erwin Schrödinger wrote a letter to Einstein in German in which he used the word Verschränkung (translated by himself as entanglement) 'to describe the correlations between two particles that interact and then separate, as in the EPR experiment.' Schrödinger shortly thereafter published a seminal paper defining and discussing the notion of 'entanglement.' In the paper he recognized the importance of the concept, and stated: 'I would not call one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.'

[ "Quantum optics", "Quantum entanglement" ]
Parent Topic
Child Topic
    No Parent Topic