language-icon Old Web
English
Sign In

Dendrochronology

Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed. As well as dating them this can give data for dendroclimatology, the study of climate and atmospheric conditions during different periods in history from wood. Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed. As well as dating them this can give data for dendroclimatology, the study of climate and atmospheric conditions during different periods in history from wood. Dendrochronology is useful for determining the precise age of samples, especially those that are too recent for radiocarbon dating, which always produces a range rather than an exact date, to be very accurate. However, for a precise date of the death of the tree a full sample to the edge is needed, which most trimmed timber will not provide. It also gives data on the timing of events and rates of change in the environment (most prominently climate) and also in wood found in archaeology or works of art and architecture, such as old panel paintings. It is also used as a check in radiocarbon dating to calibrate radiocarbon ages. New growth in trees occurs in a layer of cells near the bark. A tree's growth rate changes in a predictable pattern throughout the year in response to seasonal climate changes, resulting in visible growth rings. Each ring marks a complete cycle of seasons, or one year, in the tree's life. As of 2013, the oldest tree-ring measurements in the Northern Hemisphere are a floating sequence extending from about 12,580 to 13,900 years. Dendrochronology derives from Ancient Greek: δένδρον (dendron), meaning 'tree', χρόνος (khronos), meaning 'time', and -λογία (-logia), 'the study of'. The Greek botanist Theophrastus (c. 371 – c. 287 BC) first mentioned that the wood of trees has rings. In his Trattato della Pittura (Treatise on Painting), Leonardo da Vinci (1452–1519) was the first person to mention that trees form rings annually and that their thickness is determined by the conditions under which they grew. In 1737, French investigators Henri-Louis Duhamel du Monceau and Georges-Louis Leclerc de Buffon examined the effect of growing conditions on the shape of tree rings. They found that in 1709, a severe winter produced a distinctly dark tree ring, which served as a reference for subsequent European naturalists. In the U.S., Alexander Catlin Twining (1801–1884) suggested in 1833 that patterns among tree rings could be used to synchronize the dendrochronologies of various trees and thereby to reconstruct past climates across entire regions. The English polymath Charles Babbage proposed using dendrochronology to date the remains of trees in peat bogs or even in geological strata (1835, 1838). During the latter half of the nineteenth century, the scientific study of tree rings and the application of dendrochronology began. In 1859, the German-American Jacob Kuechler (1823–1893) used crossdating to examine oaks (Quercus stellata) in order to study the record of climate in western Texas. In 1866, the German botanist, entomologist, and forester Julius Ratzeburg (1801–1871) observed the effects on tree rings of defoliation caused by insect infestations. By 1882, this observation was already appearing in forestry textbooks. In the 1870s, the Dutch astronomer Jacobus C. Kapteyn (1851–1922) was using crossdating to reconstruct the climates of the Netherlands and Germany. In 1881, the Swiss-Austrian forester Arthur von Seckendorff-Gudent (1845–1886) was using crossdating. From 1869 to 1901, Robert Hartig (1839–1901), a German professor of forest pathology, wrote a series of papers on the anatomy and ecology of tree rings. In 1892, the Russian physicist Fedor Nikiforovich Shvedov (Фёдор Никифорович Шведов) (1841–1905) wrote that he had used patterns found in tree rings to predict droughts in 1882 and 1891. During the first half of the twentieth century, the astronomer A. E. Douglass founded the Laboratory of Tree-Ring Research at the University of Arizona. Douglass sought to better understand cycles of sunspot activity and reasoned that changes in solar activity would affect climate patterns on earth, which would subsequently be recorded by tree-ring growth patterns (i.e., sunspots → climate → tree rings). Horizontal cross sections cut through the trunk of a tree can reveal growth rings, also referred to as tree rings or annual rings. Growth rings result from new growth in the vascular cambium, a layer of cells near the bark that botanists classify as a lateral meristem; this growth in diameter is known as secondary growth. Visible rings result from the change in growth speed through the seasons of the year; thus, critical for the title method, one ring generally marks the passage of one year in the life of the tree. Removal of the bark of the tree in a particular area may cause deformation of the rings as the plant overgrows the scar. The rings are more visible in trees which have grown in temperate zones, where the seasons differ more markedly. The inner portion of a growth ring forms early in the growing season, when growth is comparatively rapid (hence the wood is less dense) and is known as 'early wood' (or 'spring wood', or 'late-spring wood'); the outer portion is the 'late wood' (sometimes termed 'summer wood', often being produced in the summer, though sometimes in the autumn) and is denser.

[ "Ecology", "Climatology", "Physical geography", "Archaeology", "Paleontology", "Abies forrestii", "Dendroarchaeology", "Picea schrenkiana", "Cedrela lilloi", "Bristlecone Pine" ]
Parent Topic
Child Topic
    No Parent Topic