language-icon Old Web
English
Sign In

Silicon photonics

Silicon photonic devices can be made using existing semiconductor fabrication techniques, and because silicon is already used as the substrate for most integrated circuits, it is possible to create hybrid devices in which the optical and electronic components are integrated onto a single microchip. Consequently, silicon photonics is being actively researched by many electronics manufacturers including IBM and Intel, as well as by academic research groups, as a means for keeping on track with Moore's Law, by using optical interconnects to provide faster data transfer both between and within microchips. The propagation of light through silicon devices is governed by a range of nonlinear optical phenomena including the Kerr effect, the Raman effect, two-photon absorption and interactions between photons and free charge carriers. The presence of nonlinearity is of fundamental importance, as it enables light to interact with light, thus permitting applications such as wavelength conversion and all-optical signal routing, in addition to the passive transmission of light. Silicon waveguides are also of great academic interest, due to their unique guiding properties, they can be used for communications, interconnects, biosensors, and they offer the possibility to support exotic nonlinear optical phenomena such as soliton propagation. In a typical optical link, data is first transferred from the electrical to the optical domain using an electro-optic modulator or a directly-modulated laser. An electro-optic modulator can vary the intensity and/or the phase of the optical carrier. In silicon photonics, a common technique to achieve modulation is to vary the density of free charge carriers. Variations of electron and hole densities change the real and the imaginary part of the refractive index of silicon as described by the empirical equations of Soref and Bennett. Modulators can consist of both forward-biased PIN diodes, which generally generate large phase-shifts but suffer of lower speeds, as well as of reverse-biased PN junctions. A prototype optical interconnect with microring modulators integrated with germanium detectors has been demonstrated.Non-resonant modulators, such as Mach-Zehnder interferometers, have typical dimensions in the millimeter range and are usually used in telecom or datacom applications. Resonant devices, such as ring-resonators, can have dimensions of few tens of micrometers only, occupying therefore much smaller areas. In 2013, researchers demonstrated a resonant depletion modulator that can be fabricated using standard Silicon-on-Insulator Complementary Metal-Oxide-Semiconductor (SOI CMOS) manufacturing processes. A similar device has been demonstrated as well in bulk CMOS rather than in SOI. On the receiver side, the optical signal is typically converted back to the electrical domain using a semiconductor photodetector. The semiconductor used for carrier generation has usually a band-gap smaller than the photon energy, and the most common choice is pure germanium. Most detectors utilize a PN junction for carrier extraction, however, detectors based on metal-semiconductor junctions (with germanium as the semiconductor) have been integrated into silicon waveguides as well. More recently, silicon-germanium avalanche photodiodes capable of operating at 40 Gbit/s have been fabricated.Complete transceivers have been commercialized in the form of active optical cables. Optical communications are conveniently classified by the reach, or length, of their links. The majority of silicon photonic communications have so far been limited to telecomand datacom applications, where the reach is of several kilometers or several meters respectively. Silicon photonics, however, is expected to play a significant role in computercom as well, where optical links have a reach in the centimeter to meter range. In fact, progress in computer technology (and the continuation of Moore's Law) is becoming increasingly dependent on faster data transfer between and within microchips. Optical interconnects may provide a way forward, and silicon photonics may prove particularly useful, once integrated on the standard silicon chips. In 2006 Former Intel senior vice president Pat Gelsinger stated that, 'Today, optics is a niche technology. Tomorrow, it's the mainstream of every chip that we build.' The first microprocessor with optical input/output (I/O) was demonstrated in December 2015 using an approach known as 'zero-change' CMOS photonics.This first demonstration was based on a 45 nm SOI node, and the bi-directional chip-to-chip link was operated at a rate of 2×2.5 Gbit/s. The total energy consumption of the link was calculated to be of 16 pJ/b and was dominated by the contribution of the off-chip laser.

[ "Waveguide (optics)", "Photonics", "Silicon", "photonic network on chip", "32 Silicon", "Slot-waveguide", "Microphotonics" ]
Parent Topic
Child Topic
    No Parent Topic