language-icon Old Web
English
Sign In

Peptide

Peptides (from Greek language πεπτός, peptós 'digested'; derived from πέσσειν, péssein 'to digest') are short chains of amino acids linked by peptide (amide) bonds. The simplest peptides are dipeptides, followed by tripeptides, tetrapeptides, etc. A polypeptide is a long, continuous, and unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological oligomers and polymers, alongside nucleic acids, oligosaccharides and polysaccharides, etc. Peptides (from Greek language πεπτός, peptós 'digested'; derived from πέσσειν, péssein 'to digest') are short chains of amino acids linked by peptide (amide) bonds. The simplest peptides are dipeptides, followed by tripeptides, tetrapeptides, etc. A polypeptide is a long, continuous, and unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological oligomers and polymers, alongside nucleic acids, oligosaccharides and polysaccharides, etc. Peptides are distinguished from proteins on the basis of size, and as an arbitrary benchmark can be understood to contain approximately 50 or fewer amino acids. Proteins consist of one or more polypeptides arranged in a biologically functional way, often bound to ligands such as coenzymes and cofactors, or to another protein or other macromolecule (DNA, RNA, etc.), or to complex macromolecular assemblies. Finally, while aspects of the lab techniques applied to peptides versus polypeptides and proteins differ (e.g., the specifics of electrophoresis, chromatography, etc.), the size boundaries that distinguish peptides from polypeptides and proteins are not absolute: long peptides such as amyloid beta have been referred to as proteins, and smaller proteins like insulin have been considered peptides. Amino acids that have been incorporated into peptides are termed 'residues'. A water molecule is released during formation of each amide bond. All peptides except cyclic peptides have an N-terminal and C-terminal residue at the end of the peptide (as shown for the tetrapeptide in the image). Many kinds of peptides are known. They have been classified or categorized according to their sources and function. According to the Handbook of Biologically Active Peptides, some groups of peptides include plant peptides, bacterial/antibiotic peptides, fungal peptides, invertebrate peptides, amphibian/skin peptides, venom peptides, cancer/anticancer peptides, vaccine peptides, immune/inflammatory peptides, brain peptides, endocrine peptides, ingestive peptides, gastrointestinal peptides, cardiovascular peptides, renal peptides, respiratory peptides, opiate peptides, neurotrophic peptides, and blood–brain peptides. Some ribosomal peptides are subject to proteolysis. These function, typically in higher organisms, as hormones and signaling molecules. Some organisms produce peptides as antibiotics, such as microcins. Peptides frequently have posttranslational modifications such as phosphorylation, hydroxylation, sulfonation, palmitoylation, glycosylation and disulfide formation. In general, peptides are linear, although lariat structures have been observed. More exotic manipulations do occur, such as racemization of L-amino acids to D-amino acids in platypus venom. Nonribosomal peptides are assembled by enzymes, not the ribosome. A common non-ribosomal peptide is glutathione, a component of the antioxidant defenses of most aerobic organisms. Other nonribosomal peptides are most common in unicellular organisms, plants, and fungi and are synthesized by modular enzyme complexes called nonribosomal peptide synthetases. These complexes are often laid out in a similar fashion, and they can contain many different modules to perform a diverse set of chemical manipulations on the developing product. These peptides are often cyclic and can have highly complex cyclic structures, although linear nonribosomal peptides are also common. Since the system is closely related to the machinery for building fatty acids and polyketides, hybrid compounds are often found. The presence of oxazoles or thiazoles often indicates that the compound was synthesized in this fashion. Peptide fragments refer to fragments of proteins that are used to identify or quantify the source protein. Often these are the products of enzymatic degradation performed in the laboratory on a controlled sample, but can also be forensic or paleontological samples that have been degraded by natural effects.

[ "Nuclear magnetic resonance", "Biochemistry", "Molecular biology", "Immunology", "Gly-Arg-Gly-Asp-Ser", "N-acetyl alanine methyl ester", "Peptide amphiphile", "5-oxaproline", "Oligopeptide" ]
Parent Topic
Child Topic
    No Parent Topic