language-icon Old Web
English
Sign In

Eclogite

Eclogite ( /ˈɛklədʒaɪt/) is a mafic metamorphic rock. Eclogite forms at pressures greater than those typical of the crust of the Earth. An unusually dense rock, eclogite can play an important role in driving convection within the solid Earth. Eclogite ( /ˈɛklədʒaɪt/) is a mafic metamorphic rock. Eclogite forms at pressures greater than those typical of the crust of the Earth. An unusually dense rock, eclogite can play an important role in driving convection within the solid Earth. The fresh rock can be striking in appearance, with red to pink garnet (almandine-pyrope) in a green matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum, and, rarely, diamond. Plagioclase is not stable in eclogite. Eclogites typically result from high to ultrahigh pressure metamorphism of mafic rocks at low thermal gradients of <10 °C/km (29 °F/mi) as they were subducted to the lower crust to upper mantle depths in a subduction zone. They are generally formed from precursor mineral assemblages typical of blueschist-facies metamorphism. Eclogite facies is determined by the temperatures and pressures required to metamorphose basaltic rocks to an eclogite assemblage. The typical eclogite mineral assemblage is garnet (pyrope to almandine) plus clinopyroxene (omphacite). Eclogites record pressures over 1.2 GPa (170,000 psi) (45 km (28 mi) depth) at about 400 to 1,000 °C (752 to 1,832 °F) and usually over 600–650 °C (1,112–1,202 °F). This is high-pressure, medium- to high-temperature metamorphism. Diamond and coesite occur as trace constituents in some eclogites and record particularly high pressures. Such ultrahigh-pressure (UHP) metamorphism has been defined as metamorphism within the eclogite facies but at pressures more than the quartz-coesite transition (the two minerals have the same composition—silica). Some UHP rocks appear to record burial at depths greater than 120 km (75 mi) if diamond occurs in these rocks. Eclogites containing lawsonite (a hydrous calcium-aluminium silicate) are rarely exposed at Earth's surface, although they are predicted from experiments and thermal models to form during normal subduction of oceanic crust at depths between about 45–300 km (28–186 mi). The rarity of lawsonite eclogites therefore does not reflect unusual formation conditions but unusual exhumation processes. Lawsonite eclogite is known from the U.S. (Franciscan Complex of California; xenoliths in Arizona); Guatemala (Motagua fault zone), Corsica, Australia, the Dominican Republic, Canada (British Columbia), and Turkey. Eclogite is the highest pressure metamorphic facies and is usually the result of advancement from blueschist metamorphic conditions. Eclogite is a rare and important rock because it is formed only by conditions typically found in the mantle or the lowermost part of thickened crust. Eclogites are helpful in elucidating patterns and processes of plate tectonics because many represent the crustal rocks that were subducted to depths in excess of 35 km and then returned to the surface.

[ "Metamorphic rock", "Subduction", "Mantle (geology)", "Metamorphism", "Carpholite", "Glaucophane", "Blueschist", "Clinozoisite", "Lawsonite" ]
Parent Topic
Child Topic
    No Parent Topic